Research Article
BibTex RIS Cite

Left-ray right-ray hybrid topologies on the real line

Year 2024, Volume: 53 Issue: 6, 1647 - 1658, 28.12.2024
https://doi.org/10.15672/hujms.1306300

Abstract

Given a non-empty set $A \subseteq \mathbb{R}$, we consider the smallest topology on $\mathbb{R}$ which contains the open left rays containing points $a \in A$ and the open right rays containing points $b \in \mathbb{R} - A$. We present a natural model for this hybrid topology and show that it is quasi-metrizable. We investigate other variations of this topology.

Supporting Institution

Brno University of Technology

Project Number

MeMoV II no. CZ.02.2.69/0.0/0.0/18-053/0016962.

Thanks

The second author acknowledges support from the Brno University of Technology (BUT) under the project MeMoV II no. CZ.02.2.69/0.0/0.0/18-053/0016962.

References

  • [1] A. Bouziad and E. Sukhacheva, On Hattori spaces, Comment. Math. Univ. Carolin. 58 (2), 213–223, 2017.
  • [2] A. Calderón-Villalobos and I. Sánches, Hattori topologies on almost topological groups, Topology Appl. 326, 108411, 15pp., 2023.
  • [3] V. A. Chatyrko and Y. Hattori, A poset of topologies on the set of real numbers, Comment. Math. Univ. Carolin. 54 (2), 189–196, 2013.
  • [4] V. Chatyrko and A. Karassev, Countable dense homogeneity and Hattori Spaces, Q&A in Gen. Top. 39, 73–87, 2021.
  • [5] P. Fletcher and W. F. Lindgren, Quasi-uniformities with a transitive base, Pacific J. Math. 43 (3), 619–631, 1972.
  • [6] R. Fox, A short proof of the Junnila quasi-metrization theorem, Proc. AMS 83 (3), 663–664, 1981.
  • [7] Y. Hattori, Order and topological structures of posets of the formal balls on metric spaces, Mem. Fac. Sci. Eng. Shimane Univ. Series B: Mathematical Science 43, 13–26, 2010.
  • [8] H. H. Hung, Quasi-metrizability, Topology and its Applications 83, 39–43, 1998.
  • [9] T. Khmyleva and E. Sukhacheva, On linear hoemomorphisms of spaces of continuous functions on Hattori spaces, Topology Appl. 281, 107209, 8pp., 2020.
  • [10] R. D. Kopperman, Which topologies are quasimetrizable?, Topology and its Applications 52, 99–107, 1993.
  • [11] H.-P. A. Künzi and F. Yildiz, Extensions of $T_0$-quasi-metrics, Acta Math. Hungar. 153 (1), 196–215, 2017.
  • [12] T. Richmond, Hybrid topologies on the real line, Applied General Topology 24 (1) 157–168, 2023.
  • [13] T. Richmond, General Topology: An Introduction, De Gruyter, 2020.
  • [14] L. A. Steen and J. A. Seeback, Jr., Counterexamples in Topology, (2nd edition) Springer-Verlag, 1970.
Year 2024, Volume: 53 Issue: 6, 1647 - 1658, 28.12.2024
https://doi.org/10.15672/hujms.1306300

Abstract

Project Number

MeMoV II no. CZ.02.2.69/0.0/0.0/18-053/0016962.

References

  • [1] A. Bouziad and E. Sukhacheva, On Hattori spaces, Comment. Math. Univ. Carolin. 58 (2), 213–223, 2017.
  • [2] A. Calderón-Villalobos and I. Sánches, Hattori topologies on almost topological groups, Topology Appl. 326, 108411, 15pp., 2023.
  • [3] V. A. Chatyrko and Y. Hattori, A poset of topologies on the set of real numbers, Comment. Math. Univ. Carolin. 54 (2), 189–196, 2013.
  • [4] V. Chatyrko and A. Karassev, Countable dense homogeneity and Hattori Spaces, Q&A in Gen. Top. 39, 73–87, 2021.
  • [5] P. Fletcher and W. F. Lindgren, Quasi-uniformities with a transitive base, Pacific J. Math. 43 (3), 619–631, 1972.
  • [6] R. Fox, A short proof of the Junnila quasi-metrization theorem, Proc. AMS 83 (3), 663–664, 1981.
  • [7] Y. Hattori, Order and topological structures of posets of the formal balls on metric spaces, Mem. Fac. Sci. Eng. Shimane Univ. Series B: Mathematical Science 43, 13–26, 2010.
  • [8] H. H. Hung, Quasi-metrizability, Topology and its Applications 83, 39–43, 1998.
  • [9] T. Khmyleva and E. Sukhacheva, On linear hoemomorphisms of spaces of continuous functions on Hattori spaces, Topology Appl. 281, 107209, 8pp., 2020.
  • [10] R. D. Kopperman, Which topologies are quasimetrizable?, Topology and its Applications 52, 99–107, 1993.
  • [11] H.-P. A. Künzi and F. Yildiz, Extensions of $T_0$-quasi-metrics, Acta Math. Hungar. 153 (1), 196–215, 2017.
  • [12] T. Richmond, Hybrid topologies on the real line, Applied General Topology 24 (1) 157–168, 2023.
  • [13] T. Richmond, General Topology: An Introduction, De Gruyter, 2020.
  • [14] L. A. Steen and J. A. Seeback, Jr., Counterexamples in Topology, (2nd edition) Springer-Verlag, 1970.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Sami Lazaar 0000-0002-3190-4251

Tom Richmond 0000-0003-1883-8146

Khadhri Sabrine 0009-0005-7156-7295

Project Number MeMoV II no. CZ.02.2.69/0.0/0.0/18-053/0016962.
Early Pub Date April 14, 2024
Publication Date December 28, 2024
Published in Issue Year 2024 Volume: 53 Issue: 6

Cite

APA Lazaar, S., Richmond, T., & Sabrine, K. (2024). Left-ray right-ray hybrid topologies on the real line. Hacettepe Journal of Mathematics and Statistics, 53(6), 1647-1658. https://doi.org/10.15672/hujms.1306300
AMA Lazaar S, Richmond T, Sabrine K. Left-ray right-ray hybrid topologies on the real line. Hacettepe Journal of Mathematics and Statistics. December 2024;53(6):1647-1658. doi:10.15672/hujms.1306300
Chicago Lazaar, Sami, Tom Richmond, and Khadhri Sabrine. “Left-Ray Right-Ray Hybrid Topologies on the Real Line”. Hacettepe Journal of Mathematics and Statistics 53, no. 6 (December 2024): 1647-58. https://doi.org/10.15672/hujms.1306300.
EndNote Lazaar S, Richmond T, Sabrine K (December 1, 2024) Left-ray right-ray hybrid topologies on the real line. Hacettepe Journal of Mathematics and Statistics 53 6 1647–1658.
IEEE S. Lazaar, T. Richmond, and K. Sabrine, “Left-ray right-ray hybrid topologies on the real line”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, pp. 1647–1658, 2024, doi: 10.15672/hujms.1306300.
ISNAD Lazaar, Sami et al. “Left-Ray Right-Ray Hybrid Topologies on the Real Line”. Hacettepe Journal of Mathematics and Statistics 53/6 (December 2024), 1647-1658. https://doi.org/10.15672/hujms.1306300.
JAMA Lazaar S, Richmond T, Sabrine K. Left-ray right-ray hybrid topologies on the real line. Hacettepe Journal of Mathematics and Statistics. 2024;53:1647–1658.
MLA Lazaar, Sami et al. “Left-Ray Right-Ray Hybrid Topologies on the Real Line”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, 2024, pp. 1647-58, doi:10.15672/hujms.1306300.
Vancouver Lazaar S, Richmond T, Sabrine K. Left-ray right-ray hybrid topologies on the real line. Hacettepe Journal of Mathematics and Statistics. 2024;53(6):1647-58.