Research Article
BibTex RIS Cite

The direct product of a star and a path is antimagic

Year 2024, Volume: 53 Issue: 6, 1698 - 1711, 28.12.2024
https://doi.org/10.15672/hujms.1308520

Abstract

A graph $G$ is antimagic if there exists a bijection $f$ from $E(G)$ to $\left\{1,2, \dots,|E(G)|\right\}$ such that the vertex sums for all vertices of $G$ are distinct, where the vertex sum is defined as the sum of the labels of all incident edges. Hartsfield and Ringel conjectured that every connected graph other than $K_2$ admits an antimagic labeling. It is still a challenging problem to address antimagicness in the case of disconnected graphs. In this paper, we study antimagicness for the disconnected graph that is constructed as the direct product of a star and a path.

Supporting Institution

Slovak Research and Development Agency

Project Number

APVV-19-0153 and VEGA 1/0243/23

Thanks

Slovak Research and Development Agency

References

  • [1] N. Alon, G. Kaplan, A. Lev, Y. Roditty and R. Yuster, Dense graphs are antimagic, J. Graph Theory 47 (4), 297–309, 2004.
  • [2] M. Baca, O. Phanalasy, J. Ryan and A. Semanicová-Fenovcíková, Antimagic labelings of join graphs, Math. Comput. Sci. 9 (2), 139–143, 2015.
  • [3] Z.C. Chen, K.C. Huang, C. Lin, J.L. Shang and M.J. Lee, Antimagicness of star forests, Util. Math. 114, 283–294, 2020.
  • [4] Y. Cheng, Lattice grids and prims are antimagic, Theor. Comput. Sci. 374 (1-3), 66–73, 2007.
  • [5] Y. Cheng, A new class of antimagic Cartesian product graphs, Discret. Math. 308 (24), 6441–6448, 2008.
  • [6] J.W. Daykin, C.S. Iliopoulos, M. Miller and O. Phanalasy, Antimagicness of generalized corona and snowflake graphs, Math. Comput. Sci. 9, 105–111, 2015.
  • [7] N. Hartsfield and G. Ringel, Pearls in Graph Theory: A Comprehensive Introduction, Academic Press: Boston, MA, USA, 1990
  • [8] Y.C. Liang and X. Zhu, Anti-magic labelling of Cartesian product of graphs, Theor. Comput. Sci. 477, 1–5, 2013.
  • [9] Y. Lu, G. Dong, W. Ma and N. Wang, Antimagic labeling of the lexicographic product graph $K_{m,m} \left[P_k\right]$, Math. Comput. Sci. 12, (1), 77–90, 2018.
  • [10] Y. Lu, G. Dong and N. Wang, Antimagicness of Lexicographic product graph $G\left[P_n\right]$, Acta Math. Appl. Sin. Engl. Ser. 36, (3), 603–619, 2020.
  • [11] W. Ma, G. Dong, Y. Lu and N. Wang, Lexicographic product graphs $P_m \left[P_n\right]$ are antimagic, AKCE Int. J. Graphs Comb. 15, (3), 271–283, 2018.
  • [12] O. Phanalasy, M. Miller, C.S. Iliopoulos, S.P. Pissis and E. Vaezpour, Construction of antimagic labeling for the Cartesian product of regular graphs, Math. Comput. Sci. 5 (1), 81–87, 2011.
  • [13] E. Sampathkumar, On tensor product of graphs, J. Aust. Math. Soc. 20 (3), 268–273, 1975.
  • [14] J.-L. Shang, $P_2$, $P_3$, $P_4$-free linear forests are antimagic, Util. Math. 101, 13–22, 2016.
  • [15] J.-L. Shang, C. Lin and S.C. Liaw, On the antimagic labeling of star forests, Util. Math. 97, 373–385, 2015.
  • [16] T.M.Wang and C.C. Hsiao, On anti-magic labeling for graph products, Discret. Math. 308 (16), 3624–3633, 2008.
  • [17] T. Wang, M. Liu and D. Li, Some classes of disconnected antimagic graphs and their joins, Wuhan Univ. J. Nat. Sci. 17, 195–199, 2012.
  • [18] T. Wang, M.J. Liu and D.M. Li, A class of antimagic join graphs, Acta Math. Sin. Engl. Ser. 29, (5), 1019–1026, 2013.
  • [19] P.M. Weichsel, The Kronecker product of graphs, Proc. Am. Math. Soc. 13, 47–52, 1963.
  • [20] Z.B. Yilma, Antimagic properties of graphs with large maximum degree, J. Graph Theory 72, (4), 367–373, 2013.
Year 2024, Volume: 53 Issue: 6, 1698 - 1711, 28.12.2024
https://doi.org/10.15672/hujms.1308520

Abstract

Project Number

APVV-19-0153 and VEGA 1/0243/23

References

  • [1] N. Alon, G. Kaplan, A. Lev, Y. Roditty and R. Yuster, Dense graphs are antimagic, J. Graph Theory 47 (4), 297–309, 2004.
  • [2] M. Baca, O. Phanalasy, J. Ryan and A. Semanicová-Fenovcíková, Antimagic labelings of join graphs, Math. Comput. Sci. 9 (2), 139–143, 2015.
  • [3] Z.C. Chen, K.C. Huang, C. Lin, J.L. Shang and M.J. Lee, Antimagicness of star forests, Util. Math. 114, 283–294, 2020.
  • [4] Y. Cheng, Lattice grids and prims are antimagic, Theor. Comput. Sci. 374 (1-3), 66–73, 2007.
  • [5] Y. Cheng, A new class of antimagic Cartesian product graphs, Discret. Math. 308 (24), 6441–6448, 2008.
  • [6] J.W. Daykin, C.S. Iliopoulos, M. Miller and O. Phanalasy, Antimagicness of generalized corona and snowflake graphs, Math. Comput. Sci. 9, 105–111, 2015.
  • [7] N. Hartsfield and G. Ringel, Pearls in Graph Theory: A Comprehensive Introduction, Academic Press: Boston, MA, USA, 1990
  • [8] Y.C. Liang and X. Zhu, Anti-magic labelling of Cartesian product of graphs, Theor. Comput. Sci. 477, 1–5, 2013.
  • [9] Y. Lu, G. Dong, W. Ma and N. Wang, Antimagic labeling of the lexicographic product graph $K_{m,m} \left[P_k\right]$, Math. Comput. Sci. 12, (1), 77–90, 2018.
  • [10] Y. Lu, G. Dong and N. Wang, Antimagicness of Lexicographic product graph $G\left[P_n\right]$, Acta Math. Appl. Sin. Engl. Ser. 36, (3), 603–619, 2020.
  • [11] W. Ma, G. Dong, Y. Lu and N. Wang, Lexicographic product graphs $P_m \left[P_n\right]$ are antimagic, AKCE Int. J. Graphs Comb. 15, (3), 271–283, 2018.
  • [12] O. Phanalasy, M. Miller, C.S. Iliopoulos, S.P. Pissis and E. Vaezpour, Construction of antimagic labeling for the Cartesian product of regular graphs, Math. Comput. Sci. 5 (1), 81–87, 2011.
  • [13] E. Sampathkumar, On tensor product of graphs, J. Aust. Math. Soc. 20 (3), 268–273, 1975.
  • [14] J.-L. Shang, $P_2$, $P_3$, $P_4$-free linear forests are antimagic, Util. Math. 101, 13–22, 2016.
  • [15] J.-L. Shang, C. Lin and S.C. Liaw, On the antimagic labeling of star forests, Util. Math. 97, 373–385, 2015.
  • [16] T.M.Wang and C.C. Hsiao, On anti-magic labeling for graph products, Discret. Math. 308 (16), 3624–3633, 2008.
  • [17] T. Wang, M. Liu and D. Li, Some classes of disconnected antimagic graphs and their joins, Wuhan Univ. J. Nat. Sci. 17, 195–199, 2012.
  • [18] T. Wang, M.J. Liu and D.M. Li, A class of antimagic join graphs, Acta Math. Sin. Engl. Ser. 29, (5), 1019–1026, 2013.
  • [19] P.M. Weichsel, The Kronecker product of graphs, Proc. Am. Math. Soc. 13, 47–52, 1963.
  • [20] Z.B. Yilma, Antimagic properties of graphs with large maximum degree, J. Graph Theory 72, (4), 367–373, 2013.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Vinothkumar Latchoumanane 0000-0002-1105-5141

Murugan V 0000-0003-3254-6887

Andrea Fenovcıkova 0000-0002-8432-9836

Project Number APVV-19-0153 and VEGA 1/0243/23
Early Pub Date April 14, 2024
Publication Date December 28, 2024
Published in Issue Year 2024 Volume: 53 Issue: 6

Cite

APA Latchoumanane, V., V, M., & Fenovcıkova, A. (2024). The direct product of a star and a path is antimagic. Hacettepe Journal of Mathematics and Statistics, 53(6), 1698-1711. https://doi.org/10.15672/hujms.1308520
AMA Latchoumanane V, V M, Fenovcıkova A. The direct product of a star and a path is antimagic. Hacettepe Journal of Mathematics and Statistics. December 2024;53(6):1698-1711. doi:10.15672/hujms.1308520
Chicago Latchoumanane, Vinothkumar, Murugan V, and Andrea Fenovcıkova. “The Direct Product of a Star and a Path Is Antimagic”. Hacettepe Journal of Mathematics and Statistics 53, no. 6 (December 2024): 1698-1711. https://doi.org/10.15672/hujms.1308520.
EndNote Latchoumanane V, V M, Fenovcıkova A (December 1, 2024) The direct product of a star and a path is antimagic. Hacettepe Journal of Mathematics and Statistics 53 6 1698–1711.
IEEE V. Latchoumanane, M. V, and A. Fenovcıkova, “The direct product of a star and a path is antimagic”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, pp. 1698–1711, 2024, doi: 10.15672/hujms.1308520.
ISNAD Latchoumanane, Vinothkumar et al. “The Direct Product of a Star and a Path Is Antimagic”. Hacettepe Journal of Mathematics and Statistics 53/6 (December 2024), 1698-1711. https://doi.org/10.15672/hujms.1308520.
JAMA Latchoumanane V, V M, Fenovcıkova A. The direct product of a star and a path is antimagic. Hacettepe Journal of Mathematics and Statistics. 2024;53:1698–1711.
MLA Latchoumanane, Vinothkumar et al. “The Direct Product of a Star and a Path Is Antimagic”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, 2024, pp. 1698-11, doi:10.15672/hujms.1308520.
Vancouver Latchoumanane V, V M, Fenovcıkova A. The direct product of a star and a path is antimagic. Hacettepe Journal of Mathematics and Statistics. 2024;53(6):1698-711.