Research Article
BibTex RIS Cite

Statistical analysis of fitting Pareto and Weibull distributions with Benford's Law: theoretical approach and empirical evidence

Year 2024, Volume: 53 Issue: 6, 1724 - 1741, 28.12.2024
https://doi.org/10.15672/hujms.1316712

Abstract

This paper studies the fundamental properties of Benford's Law which investigates the distribution of the first digits' appearance within datasets. The purpose and the usefulness of the research developed within the paper are to identify additional distributions, beyond those already investigated, that conform to the Benford distribution. As a main contribution, we state and prove {with the new approach} that the Pareto distribution and {appropriate constant times Weibull density function}, under some parameter constraint, obey Benford's Law. Further, with the statistical tests and simulation method, we quantify how the fit varies as the parameters of the Pareto distribution change. As Benford's Law is one of the main used approaches for detecting data manipulations and frauds in practice, we use that methodology to consider eventual manipulations in a set of data from the financial reports of three private hospitals operating in Serbia. Moreover, we present the conformity of the Weibull distribution to Benford's Law through the analysis of real-world data, where in the Weibull distribution demonstrates a good fit, {even proof of that conformity is a known result in the literature}. By demonstrating the adherence of Benford's characteristics to the Pareto and Weibull distributions, commonly employed for modeling in various fields, those findings can be utilized in many practical studies.

Supporting Institution

Ministry of Education and Technology, Republic of Serbia

References

  • [1] F. Balado and G.C. Silvestre, General distributions of number representation elements, Probab. Eng. Inf. Sci., 1-23, 2024.
  • [2] V. Balashov, Y. Yuxing and Z. Xiaodi, Who Manipulates Data During Pandemics? Evidence from Newcomb-Benford Law, Evidence from Newcomb-Benford Law, arXiv preprint arXiv:2007.14841, 2020.
  • [3] A. Bayerstadler, L. van Dijk and F. Winter, Bayesian multinomial latent variable modeling for fraud and abuse detection in health insurance, Insur.: Math. Econ. 71, 244-252, 2016.
  • [4] F. Benford, The law of anomalous numbers, Proc. Am. Philos. Soc., 551-572, 1938.
  • [5] L. Bermúdez, J.M. Pérez, M. Ayuso, E. Gómez and F.J. Vazquez, A Bayesian dichotomous model with asymmetric link for fraud in insurance, Insur.: Math. Econ. 42 (2), 779-786, 2008.
  • [6] C. Carslaw, Anomalies in income numbers: Evidence of goal oriented behavior, Account. Rev., 321-327, 1998
  • [7] V. Cuff, A. Lewis and S.J. Miller, The Weibull distribution and Benford’s Law, Involve, a Journal of Mathematics 8 (5), 859-874, 2015.
  • [8] D. Djoric, J. Malisic, V. Jevremovic and E. Nikolic-Djoric, Atlas raspodela, Gradjevinski fakultet, Beograd, 2007.
  • [9] R.F. Durst, C. Huynh, A. Lott, S.J. Miller, E.A. Palsson, W. Touw and G. Vriend, The Inverse Gamma Distribution and Benford’s Law, arXiv preprint arXiv:1609.04106, 2016.
  • [10] C. Durtschi, W. Hillison and C. Pacini, The effective use of Benford’s Law to assist in detecting fraud in accounting data, Journal of Forensic Accounting 5 (1), 17-34, 2004
  • [11] T. El Sehity, E. Hoelzl and E. Kirchler, Price developments after a nominal shock: Benford’s Law and psychological pricing after the euro introduction, Int. J. Res. Mark. 22 (4), 471-480, 2005.
  • [12] H.A. Engel and C. Leuenberger, Benford’s Law for exponential random variables, Stat. Probab. Lett. 63 (4), 361-365, 2003.
  • [13] G. Fang and Q. Chen, Several common probability distributions obey Benford’s Law, Phys. A: Stat. Mech. Appl. 540, 123129, 2020.
  • [14] D.E. Giles, Benford’s Law and naturally occurring prices in certain eBay auctions, Appl. Econ. Lett. 14 (3), 157-161, 2007.
  • [15] J. Golbeck, Benford’s Law applies to online social networks, PLoS One 10 (8), 2015.
  • [16] J. Gonzalez-Garcia and G.C. Pastor, Benford’s Law and macroeconomic data quality, International Monetary Fund, 2009.
  • [17] R.C. Hill, Statistical relationship involving Benford’s Law, the Lognormal distribution, and the Summation theorem, arXiv:1710.0129, viXra.org.
  • [18] T.P. Hill, Base-invariance implies Benford’s Law, Proc. Am. Math. Soc. 123 (3), 887-895, 1995.
  • [19] T.P. Hill, A statistical derivation of the significant-digit law, Stat. Sci., 354-363, 1995.
  • [20] R. Hindls and S. Hronova, Benford’s Law and possibilities for its use in governmental statistics, Statistika: Statistics & Economy Journal 95 (2), 2015.
  • [21] H. Jovšic and B. Žmuk, Assessing the quality of Covid-19 data: evidence from Newcomb-Benford Law, Facta Universitatis, Series: Economics and Organization, 135-156, 2021.
  • [22] Z. Krakar and M. Žgela, Application of Benford’s Law in payment systems auditing, Journal of Information and Organizational Sciences 33 (1), 39-51, 2009.
  • [23] L.M. Leemis, B.W. Schmeiser and D.L. Evans, Survival distributions satisfying Benford’s Law, Am. Stat. 54 (4), 236-241, 2000.
  • [24] M. Meiryani, G. Soepriyanto, D. Wahyuningtias and K. Dewi, Accounting Perspective in Hospital, International Journal of Online and Biomedical Engineering 16 (8), 2020.
  • [25] T. Michalski and G. Stoltz, Do countries falsify economic data strategically? Some evidence that they might, Rev. Econ. Stat. 95 (2), 591-616, 2013.
  • [26] J. Moreno-Montoya, Benford’s Law with small sample sizes: A new exact test useful in health sciences during epidemics, Revista de la Universidad Industrial de Santander. Salud 52 (2), 161-163, 2020.
  • [27] S. Newcomb, Note on the frequency of use of the different digits in natural numbers, Am. J. Math. 4 (1), 39-40, 1881.
  • [28] M.J. Nigrini, A taxpayer compliance application of Benford’s Law, The Journal of the American Taxation Association 18 (1), 72, 1996.
  • [29] M.J. Nigrini and L.J. Mittermaier, The use of Benford’s Law as an aid in analytical procedures, Auditing 16 (2), 52, 1997.
  • [30] M.J. Nigrini and S.J. Miller, Data diagnostics using second-order tests of Benford’s Law, Auditing: A Journal of Practice & Theory 28 (2), 305-324, 2009.
  • [31] M.J. Nigrini, Benford’s Law: Applications for forensic accounting, auditing, and fraud detection, John Wiley & Sons, 2012.
  • [32] J. Nye and C. Moul, The political economy of numbers: on the application of Benford’s Law to international macroeconomic statistics, The BE Journal of Macroeconomics 7 (1), 2007.
  • [33] M. Papic, N. Vudric and K. Jerin, Benfordov zakon i njegova primjena u forenzickom racunovodstvu, Zbornik sveucilišta Libertas 1 (1-2), 153-172, 2017.
  • [34] R.A. Raimi, The first digit problem, Am. Math. Mon. 83 (7), 521-538, 1976.
  • [35] T. Rakonjac-Antic, Penzijsko i zdravstveno osiguranje, Publishing Centre, Faculty of Economics and Business, University of Belgrade, 2018.
  • [36] R.J. Rodriguez, Reducing false alarms in the detection of human influence on data, J. Account. Audit. Finance 19 (2), 141-158, 2004.
  • [37] P.D. Scott and M. Fasli, Benford’s Law: An empirical investigation and a novel explanation, Unpublished manuscript, 2001.
  • [38] S. Slijepcevic and B. Blaškovic, Statistical detection of fraud in the reporting of Croatian public companies, Financial theory and practice 38 (1), 81-96, 2014.
  • [39] J.K. Thomas, Unusual patterns in reported earnings, Account. Rev., 773-787, 1989.
  • [40] I. Tota, A. Aliaj and J. Lamçja, The use of Benford’s Law as a tool for detecting fraud in accounting data, Interdisplinary Journal of Research and Development 3 (1), 73-77, 2016.
  • [41] H.R. Varian, Benford’s Law, Am. Stat. 26 (3), 1972.
  • [42] M.S. Warshavsky, Applying Benford’s Law in financial forensic investigations, National Litigation Consultant’s Review 10 (2), 1-4, 2010.
  • [43] J. Zhang, Testing case number of coronavirus disease 2019 in China with Newcomb- Benford Law, arXiv preprint arXiv:2002.05695, 2020.
Year 2024, Volume: 53 Issue: 6, 1724 - 1741, 28.12.2024
https://doi.org/10.15672/hujms.1316712

Abstract

References

  • [1] F. Balado and G.C. Silvestre, General distributions of number representation elements, Probab. Eng. Inf. Sci., 1-23, 2024.
  • [2] V. Balashov, Y. Yuxing and Z. Xiaodi, Who Manipulates Data During Pandemics? Evidence from Newcomb-Benford Law, Evidence from Newcomb-Benford Law, arXiv preprint arXiv:2007.14841, 2020.
  • [3] A. Bayerstadler, L. van Dijk and F. Winter, Bayesian multinomial latent variable modeling for fraud and abuse detection in health insurance, Insur.: Math. Econ. 71, 244-252, 2016.
  • [4] F. Benford, The law of anomalous numbers, Proc. Am. Philos. Soc., 551-572, 1938.
  • [5] L. Bermúdez, J.M. Pérez, M. Ayuso, E. Gómez and F.J. Vazquez, A Bayesian dichotomous model with asymmetric link for fraud in insurance, Insur.: Math. Econ. 42 (2), 779-786, 2008.
  • [6] C. Carslaw, Anomalies in income numbers: Evidence of goal oriented behavior, Account. Rev., 321-327, 1998
  • [7] V. Cuff, A. Lewis and S.J. Miller, The Weibull distribution and Benford’s Law, Involve, a Journal of Mathematics 8 (5), 859-874, 2015.
  • [8] D. Djoric, J. Malisic, V. Jevremovic and E. Nikolic-Djoric, Atlas raspodela, Gradjevinski fakultet, Beograd, 2007.
  • [9] R.F. Durst, C. Huynh, A. Lott, S.J. Miller, E.A. Palsson, W. Touw and G. Vriend, The Inverse Gamma Distribution and Benford’s Law, arXiv preprint arXiv:1609.04106, 2016.
  • [10] C. Durtschi, W. Hillison and C. Pacini, The effective use of Benford’s Law to assist in detecting fraud in accounting data, Journal of Forensic Accounting 5 (1), 17-34, 2004
  • [11] T. El Sehity, E. Hoelzl and E. Kirchler, Price developments after a nominal shock: Benford’s Law and psychological pricing after the euro introduction, Int. J. Res. Mark. 22 (4), 471-480, 2005.
  • [12] H.A. Engel and C. Leuenberger, Benford’s Law for exponential random variables, Stat. Probab. Lett. 63 (4), 361-365, 2003.
  • [13] G. Fang and Q. Chen, Several common probability distributions obey Benford’s Law, Phys. A: Stat. Mech. Appl. 540, 123129, 2020.
  • [14] D.E. Giles, Benford’s Law and naturally occurring prices in certain eBay auctions, Appl. Econ. Lett. 14 (3), 157-161, 2007.
  • [15] J. Golbeck, Benford’s Law applies to online social networks, PLoS One 10 (8), 2015.
  • [16] J. Gonzalez-Garcia and G.C. Pastor, Benford’s Law and macroeconomic data quality, International Monetary Fund, 2009.
  • [17] R.C. Hill, Statistical relationship involving Benford’s Law, the Lognormal distribution, and the Summation theorem, arXiv:1710.0129, viXra.org.
  • [18] T.P. Hill, Base-invariance implies Benford’s Law, Proc. Am. Math. Soc. 123 (3), 887-895, 1995.
  • [19] T.P. Hill, A statistical derivation of the significant-digit law, Stat. Sci., 354-363, 1995.
  • [20] R. Hindls and S. Hronova, Benford’s Law and possibilities for its use in governmental statistics, Statistika: Statistics & Economy Journal 95 (2), 2015.
  • [21] H. Jovšic and B. Žmuk, Assessing the quality of Covid-19 data: evidence from Newcomb-Benford Law, Facta Universitatis, Series: Economics and Organization, 135-156, 2021.
  • [22] Z. Krakar and M. Žgela, Application of Benford’s Law in payment systems auditing, Journal of Information and Organizational Sciences 33 (1), 39-51, 2009.
  • [23] L.M. Leemis, B.W. Schmeiser and D.L. Evans, Survival distributions satisfying Benford’s Law, Am. Stat. 54 (4), 236-241, 2000.
  • [24] M. Meiryani, G. Soepriyanto, D. Wahyuningtias and K. Dewi, Accounting Perspective in Hospital, International Journal of Online and Biomedical Engineering 16 (8), 2020.
  • [25] T. Michalski and G. Stoltz, Do countries falsify economic data strategically? Some evidence that they might, Rev. Econ. Stat. 95 (2), 591-616, 2013.
  • [26] J. Moreno-Montoya, Benford’s Law with small sample sizes: A new exact test useful in health sciences during epidemics, Revista de la Universidad Industrial de Santander. Salud 52 (2), 161-163, 2020.
  • [27] S. Newcomb, Note on the frequency of use of the different digits in natural numbers, Am. J. Math. 4 (1), 39-40, 1881.
  • [28] M.J. Nigrini, A taxpayer compliance application of Benford’s Law, The Journal of the American Taxation Association 18 (1), 72, 1996.
  • [29] M.J. Nigrini and L.J. Mittermaier, The use of Benford’s Law as an aid in analytical procedures, Auditing 16 (2), 52, 1997.
  • [30] M.J. Nigrini and S.J. Miller, Data diagnostics using second-order tests of Benford’s Law, Auditing: A Journal of Practice & Theory 28 (2), 305-324, 2009.
  • [31] M.J. Nigrini, Benford’s Law: Applications for forensic accounting, auditing, and fraud detection, John Wiley & Sons, 2012.
  • [32] J. Nye and C. Moul, The political economy of numbers: on the application of Benford’s Law to international macroeconomic statistics, The BE Journal of Macroeconomics 7 (1), 2007.
  • [33] M. Papic, N. Vudric and K. Jerin, Benfordov zakon i njegova primjena u forenzickom racunovodstvu, Zbornik sveucilišta Libertas 1 (1-2), 153-172, 2017.
  • [34] R.A. Raimi, The first digit problem, Am. Math. Mon. 83 (7), 521-538, 1976.
  • [35] T. Rakonjac-Antic, Penzijsko i zdravstveno osiguranje, Publishing Centre, Faculty of Economics and Business, University of Belgrade, 2018.
  • [36] R.J. Rodriguez, Reducing false alarms in the detection of human influence on data, J. Account. Audit. Finance 19 (2), 141-158, 2004.
  • [37] P.D. Scott and M. Fasli, Benford’s Law: An empirical investigation and a novel explanation, Unpublished manuscript, 2001.
  • [38] S. Slijepcevic and B. Blaškovic, Statistical detection of fraud in the reporting of Croatian public companies, Financial theory and practice 38 (1), 81-96, 2014.
  • [39] J.K. Thomas, Unusual patterns in reported earnings, Account. Rev., 773-787, 1989.
  • [40] I. Tota, A. Aliaj and J. Lamçja, The use of Benford’s Law as a tool for detecting fraud in accounting data, Interdisplinary Journal of Research and Development 3 (1), 73-77, 2016.
  • [41] H.R. Varian, Benford’s Law, Am. Stat. 26 (3), 1972.
  • [42] M.S. Warshavsky, Applying Benford’s Law in financial forensic investigations, National Litigation Consultant’s Review 10 (2), 1-4, 2010.
  • [43] J. Zhang, Testing case number of coronavirus disease 2019 in China with Newcomb- Benford Law, arXiv preprint arXiv:2002.05695, 2020.
There are 43 citations in total.

Details

Primary Language English
Subjects Applied Statistics
Journal Section Statistics
Authors

Jelena Stanojevic 0000-0001-5668-5297

Dragana Radojicic 0000-0001-7850-2623

Vesna Rajic 0000-0002-4566-0147

Tatjana Rakonjac-antic 0000-0003-0371-0115

Early Pub Date November 28, 2024
Publication Date December 28, 2024
Published in Issue Year 2024 Volume: 53 Issue: 6

Cite

APA Stanojevic, J., Radojicic, D., Rajic, V., Rakonjac-antic, T. (2024). Statistical analysis of fitting Pareto and Weibull distributions with Benford’s Law: theoretical approach and empirical evidence. Hacettepe Journal of Mathematics and Statistics, 53(6), 1724-1741. https://doi.org/10.15672/hujms.1316712
AMA Stanojevic J, Radojicic D, Rajic V, Rakonjac-antic T. Statistical analysis of fitting Pareto and Weibull distributions with Benford’s Law: theoretical approach and empirical evidence. Hacettepe Journal of Mathematics and Statistics. December 2024;53(6):1724-1741. doi:10.15672/hujms.1316712
Chicago Stanojevic, Jelena, Dragana Radojicic, Vesna Rajic, and Tatjana Rakonjac-antic. “Statistical Analysis of Fitting Pareto and Weibull Distributions With Benford’s Law: Theoretical Approach and Empirical Evidence”. Hacettepe Journal of Mathematics and Statistics 53, no. 6 (December 2024): 1724-41. https://doi.org/10.15672/hujms.1316712.
EndNote Stanojevic J, Radojicic D, Rajic V, Rakonjac-antic T (December 1, 2024) Statistical analysis of fitting Pareto and Weibull distributions with Benford’s Law: theoretical approach and empirical evidence. Hacettepe Journal of Mathematics and Statistics 53 6 1724–1741.
IEEE J. Stanojevic, D. Radojicic, V. Rajic, and T. Rakonjac-antic, “Statistical analysis of fitting Pareto and Weibull distributions with Benford’s Law: theoretical approach and empirical evidence”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, pp. 1724–1741, 2024, doi: 10.15672/hujms.1316712.
ISNAD Stanojevic, Jelena et al. “Statistical Analysis of Fitting Pareto and Weibull Distributions With Benford’s Law: Theoretical Approach and Empirical Evidence”. Hacettepe Journal of Mathematics and Statistics 53/6 (December 2024), 1724-1741. https://doi.org/10.15672/hujms.1316712.
JAMA Stanojevic J, Radojicic D, Rajic V, Rakonjac-antic T. Statistical analysis of fitting Pareto and Weibull distributions with Benford’s Law: theoretical approach and empirical evidence. Hacettepe Journal of Mathematics and Statistics. 2024;53:1724–1741.
MLA Stanojevic, Jelena et al. “Statistical Analysis of Fitting Pareto and Weibull Distributions With Benford’s Law: Theoretical Approach and Empirical Evidence”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 6, 2024, pp. 1724-41, doi:10.15672/hujms.1316712.
Vancouver Stanojevic J, Radojicic D, Rajic V, Rakonjac-antic T. Statistical analysis of fitting Pareto and Weibull distributions with Benford’s Law: theoretical approach and empirical evidence. Hacettepe Journal of Mathematics and Statistics. 2024;53(6):1724-41.