Research Article
BibTex RIS Cite

Persistent homology based Wasserstein distance for graph networks

Year 2025, Volume: 54 Issue: 1, 90 - 114, 28.02.2025
https://doi.org/10.15672/hujms.1317203

Abstract

The technique of measuring similarity between topological spaces using Wasserstein distance between persistence diagrams is extended to graph networks in this paper. A relationship between the Wasserstein distance of the Cartesian product of topological spaces and the Wasserstein distance of individual spaces is found to ease the comparative study of the Cartesian product of topological spaces. The Cartesian product and the strong product of weighted graphs are defined, and the relationship between the Wasserstein distance between graph products and the Wasserstein distance between individual graphs is determined. For this, clique complex filtration and the Vietoris- Rips filtration are used.

References

  • [1] A. Adcock, E. Carlsson, and G. Carlsson, The ring of algebraic functions on persistence bar codes, arXiv preprint arXiv:1304.0530, 2013.
  • [2] M. E. Aktas, E. Akbas, and A. El Fatmaoui, Persistence homology of networks: methods and applications, Applied Network Science 4 (1), 1-28, 2019.
  • [3] L. Babai, Graph isomorphism in quasipolynomial time in: Proceedings of the fortyeighth annual acm symposium on theory of computing, 684-697, ACM, 2016.
  • [4] S. Benzekry, J. A. Tuszynski, E. A. Rietman, and G. L. Klement, Design principles for cancer therapy guided by changes in complexity of protein-protein interaction networks, Biology direct 10 (1), 1-14, 2015.
  • [5] S. Bhagat, G. Cormode, and S. Muthukrishnan, Node classification in social networks, arXiv preprint arXiv:1101.3291, 2011.
  • [6] J. Binchi, E. Merelli, M. Rucco, G. Petri, and F. Vaccarino, jholes: A tool for understanding biological complex networks via clique weight rank persistent homology, Electronic Notes in Theoretical Computer Science 306, 5-18, 2014.
  • [7] P. Bubenik and J. A. Scott, Categorification of persistent homology, Discrete Comput. Geom. 51 (3), 600-627, 2014.
  • [8] G. Carlsson, A. Zomorodian, A. Collins, and L. Guibas, Persistence barcodes for shapes, Proceedings of the 2004 eurographics/acm siggraph symposium on geometry processing, pp. 124-135, 2004.
  • [9] S. Chowdhury and F. M. Emoli, Persistent homology of directed networks, 2016 50th asilomar conference on signals, systems and computers, pp. 77-81, 2016.
  • [10] H. Edelsbrunner and J. L. Harer, Computational topology: an introduction, American Mathematical Society, 2022.
  • [11] H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological persistence and simplification, Proceedings 41st annual symposium on foundations of computer science, pp. 454-463, 2000.
  • [12] P. Frosini, A distance for similarity classes of submanifolds of a euclidean space, Bulletin of the Australian Mathematical Society 42 (3), 407-415, 1990.
  • [13] H. Gakhar and J. A. Perea, Künneth formulae in persistent homology, arXiv preprint arXiv:1910.05656, 2019.
  • [14] R. Ghrist, Barcodes: the persistent topology of data, Bulletin of the American Mathematical Society 45 (1), 61-75, 2008.
  • [15] R. Hammack, W. Imrich, and S. Klavzar, Handbook of product graphs, Second, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2011. With a foreword by Peter Winkler.
  • [16] A. Hatcher, Algebraic topology, cambridge univ, Press, Cambridge, 2002.
  • [17] D. Horak, S. Maletic, and M. Rajkovic, Persistent homology of complex networks, Jour- nal of Statistical Mechanics: Theory and Experiment, 2009 (03), 2009, P03034.
  • [18] I. Knyazeva, A. Poyda, V. Orlov, V. Verkhlyutov, N. Makarenko, S. Kozlov, B. Velichkovsky and V. Ushakov, Resting state dynamic functional connectivity: Network topology analysis, Biologically Inspired Cognitive Architectures 23, 43-53, 2018.
  • [19] M. Li, K. Duncan, C. N. Topp, and D. H. Chitwood, Persistent homology and the branching topologies of plants, American journal of botany 104 (3), 349-353, 2017.
  • [20] G. R. Lopes, M. M. Moro, L. K. Wives, and J. P. M. De Oliveira, Collaboration recommendation on academic social networks, Advances in conceptual modelingapplications and challenges: Er 2010 workshops acm-l, cmlsa, cms, de@ er, fp-uml, secogis, wism, vancouver, bc, canada, november 1-4, 2010. proceedings 29, pp. 190-199, 2010.
  • [21] J. R. Munkres, Elements of algebraic topology, CRC press, 2018.
  • [22] A. R. Pears, Dimension theory of general spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975.
  • [23] V. Robins, Towards computing homology from finite approximations, Topology proceedings, pp. 503532, 1999.
  • [24] V. Salnikov, D. Cassese, R. Lambiotte, and N. S. Jones, Co-occurrence simplicial complexes in mathematics: identifying the holes of knowledge, Applied network science 3, 1-23, 2018.
  • [25] A. H. Wallace, An introduction to algebraic topology, Pergamon Press, New York- London, Paris, 1957.
  • [26] D. B. West, Introduction to graph theory, Vol. 2, Prentice hall Upper Saddle River, 2001.
  • [27] P. Zhang and G. Chartrand, Introduction to graph theory, Tata McGraw-Hill, 2006.
Year 2025, Volume: 54 Issue: 1, 90 - 114, 28.02.2025
https://doi.org/10.15672/hujms.1317203

Abstract

References

  • [1] A. Adcock, E. Carlsson, and G. Carlsson, The ring of algebraic functions on persistence bar codes, arXiv preprint arXiv:1304.0530, 2013.
  • [2] M. E. Aktas, E. Akbas, and A. El Fatmaoui, Persistence homology of networks: methods and applications, Applied Network Science 4 (1), 1-28, 2019.
  • [3] L. Babai, Graph isomorphism in quasipolynomial time in: Proceedings of the fortyeighth annual acm symposium on theory of computing, 684-697, ACM, 2016.
  • [4] S. Benzekry, J. A. Tuszynski, E. A. Rietman, and G. L. Klement, Design principles for cancer therapy guided by changes in complexity of protein-protein interaction networks, Biology direct 10 (1), 1-14, 2015.
  • [5] S. Bhagat, G. Cormode, and S. Muthukrishnan, Node classification in social networks, arXiv preprint arXiv:1101.3291, 2011.
  • [6] J. Binchi, E. Merelli, M. Rucco, G. Petri, and F. Vaccarino, jholes: A tool for understanding biological complex networks via clique weight rank persistent homology, Electronic Notes in Theoretical Computer Science 306, 5-18, 2014.
  • [7] P. Bubenik and J. A. Scott, Categorification of persistent homology, Discrete Comput. Geom. 51 (3), 600-627, 2014.
  • [8] G. Carlsson, A. Zomorodian, A. Collins, and L. Guibas, Persistence barcodes for shapes, Proceedings of the 2004 eurographics/acm siggraph symposium on geometry processing, pp. 124-135, 2004.
  • [9] S. Chowdhury and F. M. Emoli, Persistent homology of directed networks, 2016 50th asilomar conference on signals, systems and computers, pp. 77-81, 2016.
  • [10] H. Edelsbrunner and J. L. Harer, Computational topology: an introduction, American Mathematical Society, 2022.
  • [11] H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological persistence and simplification, Proceedings 41st annual symposium on foundations of computer science, pp. 454-463, 2000.
  • [12] P. Frosini, A distance for similarity classes of submanifolds of a euclidean space, Bulletin of the Australian Mathematical Society 42 (3), 407-415, 1990.
  • [13] H. Gakhar and J. A. Perea, Künneth formulae in persistent homology, arXiv preprint arXiv:1910.05656, 2019.
  • [14] R. Ghrist, Barcodes: the persistent topology of data, Bulletin of the American Mathematical Society 45 (1), 61-75, 2008.
  • [15] R. Hammack, W. Imrich, and S. Klavzar, Handbook of product graphs, Second, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2011. With a foreword by Peter Winkler.
  • [16] A. Hatcher, Algebraic topology, cambridge univ, Press, Cambridge, 2002.
  • [17] D. Horak, S. Maletic, and M. Rajkovic, Persistent homology of complex networks, Jour- nal of Statistical Mechanics: Theory and Experiment, 2009 (03), 2009, P03034.
  • [18] I. Knyazeva, A. Poyda, V. Orlov, V. Verkhlyutov, N. Makarenko, S. Kozlov, B. Velichkovsky and V. Ushakov, Resting state dynamic functional connectivity: Network topology analysis, Biologically Inspired Cognitive Architectures 23, 43-53, 2018.
  • [19] M. Li, K. Duncan, C. N. Topp, and D. H. Chitwood, Persistent homology and the branching topologies of plants, American journal of botany 104 (3), 349-353, 2017.
  • [20] G. R. Lopes, M. M. Moro, L. K. Wives, and J. P. M. De Oliveira, Collaboration recommendation on academic social networks, Advances in conceptual modelingapplications and challenges: Er 2010 workshops acm-l, cmlsa, cms, de@ er, fp-uml, secogis, wism, vancouver, bc, canada, november 1-4, 2010. proceedings 29, pp. 190-199, 2010.
  • [21] J. R. Munkres, Elements of algebraic topology, CRC press, 2018.
  • [22] A. R. Pears, Dimension theory of general spaces, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975.
  • [23] V. Robins, Towards computing homology from finite approximations, Topology proceedings, pp. 503532, 1999.
  • [24] V. Salnikov, D. Cassese, R. Lambiotte, and N. S. Jones, Co-occurrence simplicial complexes in mathematics: identifying the holes of knowledge, Applied network science 3, 1-23, 2018.
  • [25] A. H. Wallace, An introduction to algebraic topology, Pergamon Press, New York- London, Paris, 1957.
  • [26] D. B. West, Introduction to graph theory, Vol. 2, Prentice hall Upper Saddle River, 2001.
  • [27] P. Zhang and G. Chartrand, Introduction to graph theory, Tata McGraw-Hill, 2006.
There are 27 citations in total.

Details

Primary Language English
Subjects Topology
Journal Section Mathematics
Authors

Archana Babu 0000-0002-8158-8373

Sunil Jacob John 0000-0002-6333-2884

Early Pub Date April 14, 2024
Publication Date February 28, 2025
Published in Issue Year 2025 Volume: 54 Issue: 1

Cite

APA Babu, A., & John, S. J. (2025). Persistent homology based Wasserstein distance for graph networks. Hacettepe Journal of Mathematics and Statistics, 54(1), 90-114. https://doi.org/10.15672/hujms.1317203
AMA Babu A, John SJ. Persistent homology based Wasserstein distance for graph networks. Hacettepe Journal of Mathematics and Statistics. February 2025;54(1):90-114. doi:10.15672/hujms.1317203
Chicago Babu, Archana, and Sunil Jacob John. “Persistent Homology Based Wasserstein Distance for Graph Networks”. Hacettepe Journal of Mathematics and Statistics 54, no. 1 (February 2025): 90-114. https://doi.org/10.15672/hujms.1317203.
EndNote Babu A, John SJ (February 1, 2025) Persistent homology based Wasserstein distance for graph networks. Hacettepe Journal of Mathematics and Statistics 54 1 90–114.
IEEE A. Babu and S. J. John, “Persistent homology based Wasserstein distance for graph networks”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 1, pp. 90–114, 2025, doi: 10.15672/hujms.1317203.
ISNAD Babu, Archana - John, Sunil Jacob. “Persistent Homology Based Wasserstein Distance for Graph Networks”. Hacettepe Journal of Mathematics and Statistics 54/1 (February 2025), 90-114. https://doi.org/10.15672/hujms.1317203.
JAMA Babu A, John SJ. Persistent homology based Wasserstein distance for graph networks. Hacettepe Journal of Mathematics and Statistics. 2025;54:90–114.
MLA Babu, Archana and Sunil Jacob John. “Persistent Homology Based Wasserstein Distance for Graph Networks”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 1, 2025, pp. 90-114, doi:10.15672/hujms.1317203.
Vancouver Babu A, John SJ. Persistent homology based Wasserstein distance for graph networks. Hacettepe Journal of Mathematics and Statistics. 2025;54(1):90-114.