Inference for two Weibull populations under joint generalized progressive type-I hybrid censoring with a simulation study and applications
Year 2025,
Volume: 54 Issue: 1, 263 - 290, 28.02.2025
Farha Sultana
,
Çağatay Çetinkaya
,
Debasis Kundu
Abstract
The generalized progressive censoring scheme has been considered one of the most general cases of censoring schemes. In this study, we consider two Weibull populations under a jointly generalized progressive hybrid censoring scheme as a more flexible extension of the exponential distribution. The methods presented in this paper let experimenters evaluate life testing studies in the case of the most generalized censoring scheme based on a flexible istribution that has increasing, constant, and decreasing failure rates. The maximum likelihood method is used to obtain point estimates of the unknown parameters and the corresponding approximate confidence intervals by using asymptotic theory and bootstrap sampling. The Bayesian inferences are handled under informative and non-informative priors. The highest posterior density credible intervals are also obtained for the Bayesian estimations. We further obtained results with a challenging task an optimal censoring scheme using the A-optimality, D-optimality, and F-optimality criterion to let researchers determine the optimal censoring plan before conducting experiments or collecting data. Following the numerical results within this paper, A-optimality and D-optimality proposed the same scheme, while F-optimality proposed a scheme similar to them. In the last part of the study, we provide simulation studies under different censoring plans and use a numerical example to exemplify the theoretical outcomes. It is observed that the best estimation performances are obtained by informative Bayesian methods.
References
- [1] O. Abo-Kasem and A. Elshahhat, A new two sample generalized type-II hybrid censoring
scheme, Am. J. Math. Manag. Sci. 41 (2), 170184, 2022.
- [2] O. E. Abo-Kasem and A. Elshahhat, Analysis of two Weibull populations under joint
progressively hybrid censoring, Commun. Stat. Simul. Comput. 52 (9), 4469-4490,
2021.
- [3] I. Alam, M. Kamal, A. Rahman, T. Agarwal and A. Mishra, Statistical analysis using
multiple censoring scheme under partially accelerated life tests for the power Lindley
distribution, Int. J. Syst. Assur. Eng. Manag. 15, 34243436, 2024.
- [4] F. E. Almuhayfith, Statistical inference of comparative generalized inverted exponential
populations under joint adaptive progressive type-II censored samples, Alex. Eng.
J. 95, 262271, 2024.
- [5] R. Alotaibi, A. Elshahhat and M. Nassar, Analysis of muth parameters using generalized
progressive hybrid censoring with application to sodium sulfur battery, J. Radiat.
Res. Appl. Sci. 16 (3), 100624, 2023.
- [6] S. K. Ashour and O. E. Abo-Kasem, Statistical inference for two exponential populations
under joint progressive type-I censored scheme, Commun. Stat. Theory Methods
46 (7), 34793488, 2017.
- [7] N. Balakrishnan and E. Cramer, The art of progressive censoring, Springer,
Birkhäuser, New York, 2014.
- [8] N. Balakrishnan and A. Rasouli, Exact likelihood inference for two exponential populations
under joint type-II censoring, Comput. Stat. Data Anal. 52 (5), 27252738,
2008.
- [9] N. Balakrishnan and F. Su, Exact likelihood inference for k exponential populations
under joint type-II censoring, Commun. Stat. Simul. Comput. 44 (3), 591613, 2015.
- [10] Ç. Çetinkaya, Reliability estimation of a stress-strength model with non-identical component
strengths under generalized progressive hybrid censoring scheme, Stat. 55 (2),
250275, 2021.
- [11] Ç. Çetinkaya, F. Sultana and D. Kundu, Exact likelihood inference for two exponential
populations under jointly generalized progressive hybrid censoring, J. Stat. Comput.
Simul. 92 (17), 36053629, 2022.
- [12] Y. Cho, H. Sun and K. Lee, Exact likelihood inference for an exponential parameter
under generalized progressive hybrid censoring scheme, Stat. Methodol. 23, 1834,
2015.
- [13] P. Congdon, Bayesian statistical modelling, John Wiley & Sons, 2007.
- [14] R Core Team et al., R: A language and environment for statistical computing, R
Found. Stat. Comput., Vienna, 2013.
- [15] S. M. Curtis, I. Goldin and E. Evangelou, Package mcmcplots: Create Plots from
MCMC Output, CRAN Repository, 2018.
- [16] M. Doostparast, M. V. Ahmadi and J. Ahmadi, Bayes estimation based on joint
progressive type-II censored data under Linex loss function, Commun. Stat. Simul.
Comput. 42 (8), 18651886, 2013.
- [17] A. Elshahhat, Parameters estimation for the exponentiated Weibull distribution based
on generalized progressive hybrid censoring schemes, Am. J. Appl. Math. Stat. 5 (2),
3348, 2017.
- [18] A. Elshahhat, H. H. Ahmad, A. Rabaiah and O. E. Abo-Kasem, Analysis of a new
jointly hybrid censored Rayleigh populations, AIMS Math. 9 (2), 37403762, 2024.
- [19] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari and D. B. Rubin,
Bayesian data analysis, 3rd ed., Chapman & Hall/CRC, 2004.
- [20] J. Geweke, Evaluating the accuracy of sampling-based approaches to the calculations
of posterior moments, Bayesian Stat. 4, 641649, 1992.
- [21] A. S. Hassan, R. M. Mousa, and M. H. Abu-Moussa, Bayesian analysis of generalized
inverted exponential distribution based on generalized progressive hybrid censoring
competing risks data, Ann. Data Sci. 11 (4), 12251264, 2024.
- [22] H. Jeffreys, Theory of probability (3rd ed.), Oxford: Clarendon Press, 1961.
- [23] A. Koley and D. Kundu, On generalized progressive hybrid censoring in presence of
competing risks, Metrika 80, 401426, 2017.
- [24] H. Krishna, M. Dube and R. Garg, Estimation of stress-strength reliability of inverse
Weibull distribution under progressive first failure censoring, Aust. J. Stat. 48 (1),
1437, 2019.
- [25] H. Krishna and R. Goel, Jointly type-II censored Lindley distributions, Commun.
Stat. Theory Methods 51 (1), 135149, 2022.
- [26] D. Kundu and A. Joarder, Analysis of type-II progressively hybrid censored data,
Comput. Stat. Data Anal. 50 (10), 25092528, 2006.
- [27] C. T. Lin, Y. C. Chen, T. C. Yeh and H. K. T. Ng, Statistical inference and optimum
life-testing plans with joint progressively type-II censoring scheme, Qual. Technol.
Quant. Manag. 20 (3), 279306, 2023.
- [28] S. M. Lynch, Introduction to applied Bayesian statistics and estimation for social
scientists, Springer, New York, 2007.
- [29] M. Maswadah, Improved maximum likelihood estimation of the shape-scale family
based on the generalized progressive hybrid censoring scheme, J. Appl. Stat. 49 (11),
28252844, 2022.
- [30] S. Mondal and D. Kundu, Point and interval estimation of Weibull parameters based
on joint progressively censored data, Sankhya B 81 (1), 125, 2019.
- [31] S. Mondal and D. Kundu, Bayesian inference for Weibull distribution under the balanced
joint type-II progressive censoring scheme, Am. J. Math. Manag. Sci. 39 (1),
5674, 2020.
- [32] M. Plummer, N. Best, K. Cowles and K. Vines, CODA: Convergence Diagnosis and
Output Analysis for MCMC, R News 6, 711, 2006.
- [33] A. Rahman, M. Kamal, S. Khan, M. F. Khan, M. S. Mustafa, E. Hussam, M. N.
Atchadé and A. Al Mutairi, Statistical inferences under step stress partially accelerated
life testing based on multiple censoring approaches using simulated and real-life
engineering data, Sci. Rep. 13, 12452, 2023.
- [34] A. Rasouli and N. Balakrishnan, Exact likelihood inference for two exponential populations
under joint progressive type-II censoring, Commun. Stat. Theory Methods 39
(12), 21722191, 2010.
- [35] S. Salem, O. E. Abo-Kasem and A. Hussien, On joint type-II generalized progressive
hybrid censoring scheme, Comput. J. Math. Stat. Sci. 2 (1), 123158, 2023.
- [36] B. Saraçolu, . Kinaci and D. Kundu, On estimation of $R=P(Y<X)$ for exponential
distribution under progressive type-II censoring, J. Stat. Comput. Simul. 82 (5),
729744, 2012.
- [37] W. Shi and W. Gui, Estimation for two Gompertz populations under a balanced joint
progressive type-II censoring scheme, J. Appl. Stat. 51 (8), 14701496, 2024.
- [38] F. Su and X. Zhu, Exact likelihood inference for two exponential populations based
on a joint generalized type-I hybrid censored sample, J. Stat. Comput. Simul. 86 (7),
13421362, 2016.
- [39] F. Sultana, A. Koley, A. Pal and D. Kundu, On two exponential populations under a
joint adaptive type-II progressive censoring, Stat. 55 (6), 13281355, 2021.
- [40] R. J. Tibshirani and B. Efron, An introduction to the bootstrap, Monogr. Stat. Appl.
Probab., London: CRC Press, 57, 1436, 1993.
- [41] Z. Xia, J. Yu, L. Cheng, L. Liu and W. Wang, Study on the breaking strength of jute
fibres using modified Weibull distribution, Compos. Part A Appl. Sci. Manuf. 40 (1),
5459, 2009.
- [42] T. Zhu, Reliability inference for multicomponent stressstrength model under generalized
progressive hybrid censoring, J. Comput. Appl. Math. 451, 116015, 2024.
Year 2025,
Volume: 54 Issue: 1, 263 - 290, 28.02.2025
Farha Sultana
,
Çağatay Çetinkaya
,
Debasis Kundu
References
- [1] O. Abo-Kasem and A. Elshahhat, A new two sample generalized type-II hybrid censoring
scheme, Am. J. Math. Manag. Sci. 41 (2), 170184, 2022.
- [2] O. E. Abo-Kasem and A. Elshahhat, Analysis of two Weibull populations under joint
progressively hybrid censoring, Commun. Stat. Simul. Comput. 52 (9), 4469-4490,
2021.
- [3] I. Alam, M. Kamal, A. Rahman, T. Agarwal and A. Mishra, Statistical analysis using
multiple censoring scheme under partially accelerated life tests for the power Lindley
distribution, Int. J. Syst. Assur. Eng. Manag. 15, 34243436, 2024.
- [4] F. E. Almuhayfith, Statistical inference of comparative generalized inverted exponential
populations under joint adaptive progressive type-II censored samples, Alex. Eng.
J. 95, 262271, 2024.
- [5] R. Alotaibi, A. Elshahhat and M. Nassar, Analysis of muth parameters using generalized
progressive hybrid censoring with application to sodium sulfur battery, J. Radiat.
Res. Appl. Sci. 16 (3), 100624, 2023.
- [6] S. K. Ashour and O. E. Abo-Kasem, Statistical inference for two exponential populations
under joint progressive type-I censored scheme, Commun. Stat. Theory Methods
46 (7), 34793488, 2017.
- [7] N. Balakrishnan and E. Cramer, The art of progressive censoring, Springer,
Birkhäuser, New York, 2014.
- [8] N. Balakrishnan and A. Rasouli, Exact likelihood inference for two exponential populations
under joint type-II censoring, Comput. Stat. Data Anal. 52 (5), 27252738,
2008.
- [9] N. Balakrishnan and F. Su, Exact likelihood inference for k exponential populations
under joint type-II censoring, Commun. Stat. Simul. Comput. 44 (3), 591613, 2015.
- [10] Ç. Çetinkaya, Reliability estimation of a stress-strength model with non-identical component
strengths under generalized progressive hybrid censoring scheme, Stat. 55 (2),
250275, 2021.
- [11] Ç. Çetinkaya, F. Sultana and D. Kundu, Exact likelihood inference for two exponential
populations under jointly generalized progressive hybrid censoring, J. Stat. Comput.
Simul. 92 (17), 36053629, 2022.
- [12] Y. Cho, H. Sun and K. Lee, Exact likelihood inference for an exponential parameter
under generalized progressive hybrid censoring scheme, Stat. Methodol. 23, 1834,
2015.
- [13] P. Congdon, Bayesian statistical modelling, John Wiley & Sons, 2007.
- [14] R Core Team et al., R: A language and environment for statistical computing, R
Found. Stat. Comput., Vienna, 2013.
- [15] S. M. Curtis, I. Goldin and E. Evangelou, Package mcmcplots: Create Plots from
MCMC Output, CRAN Repository, 2018.
- [16] M. Doostparast, M. V. Ahmadi and J. Ahmadi, Bayes estimation based on joint
progressive type-II censored data under Linex loss function, Commun. Stat. Simul.
Comput. 42 (8), 18651886, 2013.
- [17] A. Elshahhat, Parameters estimation for the exponentiated Weibull distribution based
on generalized progressive hybrid censoring schemes, Am. J. Appl. Math. Stat. 5 (2),
3348, 2017.
- [18] A. Elshahhat, H. H. Ahmad, A. Rabaiah and O. E. Abo-Kasem, Analysis of a new
jointly hybrid censored Rayleigh populations, AIMS Math. 9 (2), 37403762, 2024.
- [19] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari and D. B. Rubin,
Bayesian data analysis, 3rd ed., Chapman & Hall/CRC, 2004.
- [20] J. Geweke, Evaluating the accuracy of sampling-based approaches to the calculations
of posterior moments, Bayesian Stat. 4, 641649, 1992.
- [21] A. S. Hassan, R. M. Mousa, and M. H. Abu-Moussa, Bayesian analysis of generalized
inverted exponential distribution based on generalized progressive hybrid censoring
competing risks data, Ann. Data Sci. 11 (4), 12251264, 2024.
- [22] H. Jeffreys, Theory of probability (3rd ed.), Oxford: Clarendon Press, 1961.
- [23] A. Koley and D. Kundu, On generalized progressive hybrid censoring in presence of
competing risks, Metrika 80, 401426, 2017.
- [24] H. Krishna, M. Dube and R. Garg, Estimation of stress-strength reliability of inverse
Weibull distribution under progressive first failure censoring, Aust. J. Stat. 48 (1),
1437, 2019.
- [25] H. Krishna and R. Goel, Jointly type-II censored Lindley distributions, Commun.
Stat. Theory Methods 51 (1), 135149, 2022.
- [26] D. Kundu and A. Joarder, Analysis of type-II progressively hybrid censored data,
Comput. Stat. Data Anal. 50 (10), 25092528, 2006.
- [27] C. T. Lin, Y. C. Chen, T. C. Yeh and H. K. T. Ng, Statistical inference and optimum
life-testing plans with joint progressively type-II censoring scheme, Qual. Technol.
Quant. Manag. 20 (3), 279306, 2023.
- [28] S. M. Lynch, Introduction to applied Bayesian statistics and estimation for social
scientists, Springer, New York, 2007.
- [29] M. Maswadah, Improved maximum likelihood estimation of the shape-scale family
based on the generalized progressive hybrid censoring scheme, J. Appl. Stat. 49 (11),
28252844, 2022.
- [30] S. Mondal and D. Kundu, Point and interval estimation of Weibull parameters based
on joint progressively censored data, Sankhya B 81 (1), 125, 2019.
- [31] S. Mondal and D. Kundu, Bayesian inference for Weibull distribution under the balanced
joint type-II progressive censoring scheme, Am. J. Math. Manag. Sci. 39 (1),
5674, 2020.
- [32] M. Plummer, N. Best, K. Cowles and K. Vines, CODA: Convergence Diagnosis and
Output Analysis for MCMC, R News 6, 711, 2006.
- [33] A. Rahman, M. Kamal, S. Khan, M. F. Khan, M. S. Mustafa, E. Hussam, M. N.
Atchadé and A. Al Mutairi, Statistical inferences under step stress partially accelerated
life testing based on multiple censoring approaches using simulated and real-life
engineering data, Sci. Rep. 13, 12452, 2023.
- [34] A. Rasouli and N. Balakrishnan, Exact likelihood inference for two exponential populations
under joint progressive type-II censoring, Commun. Stat. Theory Methods 39
(12), 21722191, 2010.
- [35] S. Salem, O. E. Abo-Kasem and A. Hussien, On joint type-II generalized progressive
hybrid censoring scheme, Comput. J. Math. Stat. Sci. 2 (1), 123158, 2023.
- [36] B. Saraçolu, . Kinaci and D. Kundu, On estimation of $R=P(Y<X)$ for exponential
distribution under progressive type-II censoring, J. Stat. Comput. Simul. 82 (5),
729744, 2012.
- [37] W. Shi and W. Gui, Estimation for two Gompertz populations under a balanced joint
progressive type-II censoring scheme, J. Appl. Stat. 51 (8), 14701496, 2024.
- [38] F. Su and X. Zhu, Exact likelihood inference for two exponential populations based
on a joint generalized type-I hybrid censored sample, J. Stat. Comput. Simul. 86 (7),
13421362, 2016.
- [39] F. Sultana, A. Koley, A. Pal and D. Kundu, On two exponential populations under a
joint adaptive type-II progressive censoring, Stat. 55 (6), 13281355, 2021.
- [40] R. J. Tibshirani and B. Efron, An introduction to the bootstrap, Monogr. Stat. Appl.
Probab., London: CRC Press, 57, 1436, 1993.
- [41] Z. Xia, J. Yu, L. Cheng, L. Liu and W. Wang, Study on the breaking strength of jute
fibres using modified Weibull distribution, Compos. Part A Appl. Sci. Manuf. 40 (1),
5459, 2009.
- [42] T. Zhu, Reliability inference for multicomponent stressstrength model under generalized
progressive hybrid censoring, J. Comput. Appl. Math. 451, 116015, 2024.