On a nonlinear difference equation of the fourth order solvable in closed form and its solutions
Year 2025,
Volume: 54 Issue: 2, 498 - 515, 28.04.2025
Stevo Stevic
Abstract
We show that a nonlinear difference equation recently considered in this journal is a special case of a solvable class of nonlinear difference equations and that the difference equation is closely related to a difference equation previously considered in the literature. We give some detailed theoretical explanations for the closed-form formulas for the solutions to the four special cases of the difference equation considered therein without giving any theoretical explanations related to them, and also show that several statements on the long-term behaviour of positive solutions to the difference equation given therein are not true.
References
-
[1] D. Adamović, Solution to problem 194, Mat. Vesnik 23, 236-242, 1971.
-
[2] I. Bajo and E. Liz, Global behaviour of a second-order nonlinear difference equation,
J. Difference Equ. Appl. 17 (10), 1471-1486, 2011.
-
[3] L. Berg and S. Stević, On the asymptotics of the difference equation $y_n(1+y_{n-1}\cdots y_{n-k+1})=y_{n-k}$, J. Difference Equ. Appl. 17 (4), 577-586, 2011.
-
[4] D. Bernoulli, Observationes de seriebus quae formantur ex additione vel substractione
quacunque terminorum se mutuo consequentium, ubi praesertim earundem insignis
usus pro inveniendis radicum omnium aequationum algebraicarum ostenditur,
Commentarii Acad. Petropol. III, 1728, 85-100, 1732. (in Latin)
-
[5] G. Boole, A Treatsie on the Calculus of Finite Differences, Third Edition, Macmillan
and Co., London, 1880.
-
[6] L. Brand, A sequence defined by a difference equation, Amer. Math. Monthly 62 (7),
489-492, 1955.
-
[7] B. P. Demidovich and I. A. Maron, Computational Mathematics, Mir Publishers,
Moscow, 1973.
-
[8] A. de Moivre, Miscellanea Analytica de Seriebus et Quadraturis, J. Tonson & J.Watts,
Londini, 1730. (in Latin)
-
[9] E. M. Elsayed and M. M. El-Dessoky, Dynamics and global behavior for a fourth-order
rational difference equation, Hacet. J. Math. Stat. 42 (5), 479-494, 2013.
-
[10] C. Jordan, Calculus of Finite Differences, Chelsea Publishing Company, New York,
1965.
-
[11] G. Karakostas, The forbidden set, solvability and stability of a circular system of
complex Riccati type difference equations, AIMS Mathematics 8 (11), 28033-28050,
2023.
-
[12] V. A. Krechmar, A Problem Book in Algebra, Mir Publishers, Moscow, 1974.
-
[13] S. F. Lacroix, Traité des Differénces et des Séries, J. B. M. Duprat, Paris, 1800. (in
French)
-
[14] S. F. Lacroix, An Elementary Treatise on the Differential and Integral Calculus, with
an Appendix and Notes by J. Herschel, J. Smith, Cambridge, 1816.
-
[15] J.-L. Lagrange, Sur l’intégration d’une équation différentielle à différences finies, qui
contient la théorie des suites récurrentes, Miscellanea Taurinensia, t. I, (1759), 33-42
(Lagrange OEuvres, I, 23-36, 1867). (in French)
-
[16] P. S. Laplace, Recherches sur l’intégration des équations différentielles aux différences
finies et sur leur usage dans la théorie des hasards, Mémoires de l’ Académie Royale
des Sciences de Paris 1773, t. VII, (1776) (Laplace OEuvres, VIII, 69-197, 1891). (in
French)
-
[17] H. Levy and F. Lessman, Finite Difference Equations, The Macmillan Company, New
York, NY, USA, 1961.
-
[18] A. A. Markoff, Differenzenrechnung, Teubner, Leipzig, 1896. (in German)
-
[19] D. S. Mitrinović and J. D. Kečkić, Metodi Izračunavanja Konačnih Zbirova, Naučna
Knjiga, Beograd, 1984. (in Serbian)
-
[20] G. Papaschinopoulos and C. J. Schinas, Invariants for systems of two nonlinear difference
equations, Differ. Equ. Dyn. Syst. 7, 181–196, 1999.
-
[21] G. Papaschinopoulos and C. J. Schinas, Invariants and oscillation for systems of two
nonlinear difference equations, Nonlinear Anal. Theory Methods Appl. 46, 967–978,
2001.
-
[22] G. Papaschinopoulos and G. Stefanidou, Asymptotic behavior of the solutions of a
class of rational difference equations, Inter. J. Difference Equations 5 (2), 233-249,
2010.
-
[23] M. H. Rhouma, The Fibonacci sequence modulo $\pi$, chaos and some rational recursive
equations, J. Math. Anal. Appl. 310, 506-517, 2005.
-
[24] J. Riordan, Combinatorial Identities, John Wiley & Sons Inc., New York-London-
Sydney, 1968.
-
[25] C. Schinas, Invariants for difference equations and systems of difference equations of
rational form, J. Math. Anal. Appl. 216, 164-179, 1997.
-
[26] C. Schinas, Invariants for some difference equations, J. Math. Anal. Appl. 212, 281-
291, 1997.
-
[27] S. Stević, On the recursive sequence $x_{n+1}=A/\prod_{i=0}^k x_{n-i}+1/\prod_{j=k+2}^{2(k+1)}x_{n-j}$, Taiwanese
J. Math. 7 (2), 249-259, 2003.
-
[28] S. Stević, Representation of solutions of bilinear difference equations in terms of generalized
Fibonacci sequences, Electron. J. Qual. Theory Differ. Equ. 2014, 67, 15
pages, 2014.
-
[29] S. Stević, Representations of solutions to linear and bilinear difference equations and
systems of bilinear difference equations, Adv. Difference Equ. 2018, 474, 21 pages,
2018.
-
[30] S. Stević, General solution to a difference equation and the long-term behavior of
some of its solutions, Hacet. J. Math. Stat. (2024) (in press).
-
[31] S. Stević, J. Diblik, B. Iričanin and Z. Šmarda, On some solvable difference equations
and systems of difference equations, Abstr. Appl. Anal. 2012, 541761, 11 pages, 2012.
-
[32] S. Stević, J. Diblik, B. Iričanin and Z. Šmarda, On a solvable system of rational
difference equations, J. Difference Equ. Appl. 20 (5-6), 811-825, 2014.
-
[33] S. Stević, J. Diblik, B. Iričanin and Z. Šmarda, Solvability of nonlinear difference
equations of fourth order, Electron. J. Differential Equations 2014, 264, 14 pages,
2014.
-
[34] S. Stević, B. Iričanin, W. Kosmala and Z. Šmarda, Note on the bilinear difference
equation with a delay, Math. Methods Appl. Sci. 41, 9349-9360, 2018.
-
[35] S. Stević, B. Iričanin, W. Kosmala and Z. Šmarda, On a solvable class of nonlinear
difference equations of fourth order, Electron. J. Qual. Theory Differ. Equ. 2022, 37,
17 pages, 2022.
-
[36] S. Stević, B. Iričanin and Z. Šmarda, On a close to symmetric system of difference
equations of second order, Adv. Difference Equ. 2015, 264, 17 pages, 2015.
-
[37] S. Stević, B. Iričanin and Z. Šmarda, On a product-type system of difference equations
of second order solvable in closed form, J. Inequal. Appl. 2015, 327, 15 pages, 2015.
-
[38] S. Stević, B. Iričanin and Z. Šmarda, On a symmetric bilinear system of difference
equations, Appl. Math. Lett. 89, (15-21), 2019.
-
[39] N. N. Vorobiev, Fibonacci Numbers, Birkhäuser, Basel, 2002.