Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 3, 939 - 957, 24.06.2025
https://doi.org/10.15672/hujms.1307423

Abstract

References

  • [1] MR. Ahmadi and R. Jahani-Nezhad, Energy and Wiener index of zero divisor graphs, J. Iranian of Math Chem. 2 (1), 45-51, 2011.
  • [2] D. F. Anderson, T. Asir, A. Badawi, and T. T. Chelvam, Graphs from rings, Springer, 2021.
  • [3] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217, No. 2, 434- 447, 1999.
  • [4] T. Asir, A. Kumar and A. Mehdi, On the zero-divisor hypergraph of a reduced ring, Acta Math. Hungar. 1-14, 2023.
  • [5] T. Asir, V. Rabikka, A. M. Anto and N. Shunmugapriya, Wiener index of graphs over rings: a survey, AKCE International Journal of Graphs and Combinatorics 19(3), 316-324, 2022.
  • [6] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison- Wesley Publishing, Reading, MA, 1969.
  • [7] I. Beck, Coloring of commutative rings, J. Algebra 116, 208226, 1988.
  • [8] D. Bonchev, The Wiener numbersome applications and new developments, In Topology in Chem, 58-88, 2002.
  • [9] A. Cayley, Desiderata and suggestions: The theory of groups: Graphical representation, Amer. J. Math. 1, 174176, 1878.
  • [10] A. Dobrynin, R. Entringer and I. N Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 3, 211-249, 2001.
  • [11] J. B. Fraleigh, A first course in abstract algebra, Pearson Education India 2003.
  • [12] A. Graovac and T. Pisanski, On the Wiener index of a graph, J. math chem. 8 (1), 53-62, 1991.
  • [13] M. Hazewinkel, Formal groups and applications, Vol. 78. Elsevier, 1978.
  • [14] H. Hosoya, Topological index. a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn. 44 (9), 23322339, 1971.
  • [15] H. M. Hoque, H. K. Saikia, J. Goswami and D. Patwari, Non-Nilpotent Graph of Commutative Rings, J. Algebraic System 12 (1), 149-162, 2024.
  • [16] T. W. Hungerford, Algebra, Springer Science and Business Media, 2003.
  • [17] W. Hungerford, Thomas Abstract algebra: an introduction, Cengage Learning, 2012.
  • [18] D. Janei, A. Milievi, S. Nikoli, N. Trinajsti, Graph-theoretical matrices in chemistry, Second edition, CRC Press, Boca Raton. F. xiv+160 pp. ISBN: 978-1-4987-0115-0, 2015.
  • [19] D. J. Klein, I Lukovits, I Gutman, On the defination of the hyper Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci. 35, 50-52, 1995.
  • [20] B. Külshammer, Lectures on block theory, Cambridge University Press, 1991.
  • [21] J.J. Molitierno, Applications of combinatorial matrix theory to Laplacian matrices of graphs, CRC Press, 2016.
  • [22] GR. Omidi and E. Vatandoost, On the commuting graph of rings, J. Algebra Appl. 10 (3), 521-52, 2011.
  • [23] S. Pirzada, An Introduction to Graph Theory, Universities Press, Hyderabad, India, 2011.
  • [24] Q. Ma, Extremal polygonal chains with respect to the Kirchhoff index, Disc. Appl. Math. 342, 218-226, 2024.
  • [25] M. Randitc, Novel molecular descriptor for structure-property studies, Chem. Phys. Lett. 211, 478-483, 1993.
  • [26] N. U. Rehman, M. Nazim and K. Selvakumar, On the genus of extended zero-divisor graph of commutative rings, Rend. Circ. Mat. Palermo 2, 1-10, 2022.
  • [27] K. Selvakumar, P. Gangaeswari and G. Arunkumar, The Wiener index of the zerodivisor graph of a finite commutative ring with unity, Dis. Appl. Math. 311, 72-84, 2022.
  • [28] NH. Shuker and PA. Rashed, The zero divisor graph of the ring Zpqr, Int. J. Sci. 6 (2), 569-574, 2015.
  • [29] H. Wiener, Structural determination of the paraffin boiling points. J. Am. Chem. Soc. 69, 17-20, 1947.
  • [30] R. Wilson. J, Introduction to graph theory. Pearson Education India, 1979.
  • [31] K. Xu, M. Liu, K. C. Das, I. Gutman, and B. Furtula, A survey on graphs extremal with respect to distance-based topologicalindices, MATCH Commun. Math. Comput. Chem, 71 (3), 461508, 2014.
  • [32] K. Yamazaki, M. Qian and R. Uehara, Efficient enumeration of non-isomorphic distance-hereditary graphs and related graphs, Disc. App. Math. 342, 190-199, 2024.
  • [33] Y.-N. Yeh, I. Gutman, On the sum of all distances in composite graphs, Disc. Math, 135, 359365, 1994.

Wiener index of local rings

Year 2025, Volume: 54 Issue: 3, 939 - 957, 24.06.2025
https://doi.org/10.15672/hujms.1307423

Abstract

Let $R$ be a finite commutative ring with nonzero identity. Let $Z^{*}(R)$ be the set of nonzero zero-divisors of $R$. We are dealing with the zero-divisor graph of $R$ which is denoted by $\Gamma(R)$ with vertex set $Z^{*}(R)$, where two distinct vertices $x$ and $y$ are adjacent if and only if $xy=0$. The motivation of this study is to compute Wiener index in algebraic graph theory for special type of graph called zero-divisor graph. Wiener index is defined as the sum of all distance between all pairs of vertices in $\Gamma(R)$. In addition, we generalize the Wiener index of the zero-divisor graph in $\mathbb{Z}_p[x]/(x^2)$ for any prime number $p$. We obtain our results and methods by tables and figures.

References

  • [1] MR. Ahmadi and R. Jahani-Nezhad, Energy and Wiener index of zero divisor graphs, J. Iranian of Math Chem. 2 (1), 45-51, 2011.
  • [2] D. F. Anderson, T. Asir, A. Badawi, and T. T. Chelvam, Graphs from rings, Springer, 2021.
  • [3] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217, No. 2, 434- 447, 1999.
  • [4] T. Asir, A. Kumar and A. Mehdi, On the zero-divisor hypergraph of a reduced ring, Acta Math. Hungar. 1-14, 2023.
  • [5] T. Asir, V. Rabikka, A. M. Anto and N. Shunmugapriya, Wiener index of graphs over rings: a survey, AKCE International Journal of Graphs and Combinatorics 19(3), 316-324, 2022.
  • [6] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison- Wesley Publishing, Reading, MA, 1969.
  • [7] I. Beck, Coloring of commutative rings, J. Algebra 116, 208226, 1988.
  • [8] D. Bonchev, The Wiener numbersome applications and new developments, In Topology in Chem, 58-88, 2002.
  • [9] A. Cayley, Desiderata and suggestions: The theory of groups: Graphical representation, Amer. J. Math. 1, 174176, 1878.
  • [10] A. Dobrynin, R. Entringer and I. N Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 3, 211-249, 2001.
  • [11] J. B. Fraleigh, A first course in abstract algebra, Pearson Education India 2003.
  • [12] A. Graovac and T. Pisanski, On the Wiener index of a graph, J. math chem. 8 (1), 53-62, 1991.
  • [13] M. Hazewinkel, Formal groups and applications, Vol. 78. Elsevier, 1978.
  • [14] H. Hosoya, Topological index. a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn. 44 (9), 23322339, 1971.
  • [15] H. M. Hoque, H. K. Saikia, J. Goswami and D. Patwari, Non-Nilpotent Graph of Commutative Rings, J. Algebraic System 12 (1), 149-162, 2024.
  • [16] T. W. Hungerford, Algebra, Springer Science and Business Media, 2003.
  • [17] W. Hungerford, Thomas Abstract algebra: an introduction, Cengage Learning, 2012.
  • [18] D. Janei, A. Milievi, S. Nikoli, N. Trinajsti, Graph-theoretical matrices in chemistry, Second edition, CRC Press, Boca Raton. F. xiv+160 pp. ISBN: 978-1-4987-0115-0, 2015.
  • [19] D. J. Klein, I Lukovits, I Gutman, On the defination of the hyper Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci. 35, 50-52, 1995.
  • [20] B. Külshammer, Lectures on block theory, Cambridge University Press, 1991.
  • [21] J.J. Molitierno, Applications of combinatorial matrix theory to Laplacian matrices of graphs, CRC Press, 2016.
  • [22] GR. Omidi and E. Vatandoost, On the commuting graph of rings, J. Algebra Appl. 10 (3), 521-52, 2011.
  • [23] S. Pirzada, An Introduction to Graph Theory, Universities Press, Hyderabad, India, 2011.
  • [24] Q. Ma, Extremal polygonal chains with respect to the Kirchhoff index, Disc. Appl. Math. 342, 218-226, 2024.
  • [25] M. Randitc, Novel molecular descriptor for structure-property studies, Chem. Phys. Lett. 211, 478-483, 1993.
  • [26] N. U. Rehman, M. Nazim and K. Selvakumar, On the genus of extended zero-divisor graph of commutative rings, Rend. Circ. Mat. Palermo 2, 1-10, 2022.
  • [27] K. Selvakumar, P. Gangaeswari and G. Arunkumar, The Wiener index of the zerodivisor graph of a finite commutative ring with unity, Dis. Appl. Math. 311, 72-84, 2022.
  • [28] NH. Shuker and PA. Rashed, The zero divisor graph of the ring Zpqr, Int. J. Sci. 6 (2), 569-574, 2015.
  • [29] H. Wiener, Structural determination of the paraffin boiling points. J. Am. Chem. Soc. 69, 17-20, 1947.
  • [30] R. Wilson. J, Introduction to graph theory. Pearson Education India, 1979.
  • [31] K. Xu, M. Liu, K. C. Das, I. Gutman, and B. Furtula, A survey on graphs extremal with respect to distance-based topologicalindices, MATCH Commun. Math. Comput. Chem, 71 (3), 461508, 2014.
  • [32] K. Yamazaki, M. Qian and R. Uehara, Efficient enumeration of non-isomorphic distance-hereditary graphs and related graphs, Disc. App. Math. 342, 190-199, 2024.
  • [33] Y.-N. Yeh, I. Gutman, On the sum of all distances in composite graphs, Disc. Math, 135, 359365, 1994.
There are 33 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Eman Almotairi 0000-0002-3335-1638

Ahmad Mohammed Alghamdi 0000-0001-9715-1558

Early Pub Date April 11, 2025
Publication Date June 24, 2025
Published in Issue Year 2025 Volume: 54 Issue: 3

Cite

APA Almotairi, E., & Alghamdi, A. M. (2025). Wiener index of local rings. Hacettepe Journal of Mathematics and Statistics, 54(3), 939-957. https://doi.org/10.15672/hujms.1307423
AMA Almotairi E, Alghamdi AM. Wiener index of local rings. Hacettepe Journal of Mathematics and Statistics. June 2025;54(3):939-957. doi:10.15672/hujms.1307423
Chicago Almotairi, Eman, and Ahmad Mohammed Alghamdi. “Wiener Index of Local Rings”. Hacettepe Journal of Mathematics and Statistics 54, no. 3 (June 2025): 939-57. https://doi.org/10.15672/hujms.1307423.
EndNote Almotairi E, Alghamdi AM (June 1, 2025) Wiener index of local rings. Hacettepe Journal of Mathematics and Statistics 54 3 939–957.
IEEE E. Almotairi and A. M. Alghamdi, “Wiener index of local rings”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 3, pp. 939–957, 2025, doi: 10.15672/hujms.1307423.
ISNAD Almotairi, Eman - Alghamdi, Ahmad Mohammed. “Wiener Index of Local Rings”. Hacettepe Journal of Mathematics and Statistics 54/3 (June2025), 939-957. https://doi.org/10.15672/hujms.1307423.
JAMA Almotairi E, Alghamdi AM. Wiener index of local rings. Hacettepe Journal of Mathematics and Statistics. 2025;54:939–957.
MLA Almotairi, Eman and Ahmad Mohammed Alghamdi. “Wiener Index of Local Rings”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 3, 2025, pp. 939-57, doi:10.15672/hujms.1307423.
Vancouver Almotairi E, Alghamdi AM. Wiener index of local rings. Hacettepe Journal of Mathematics and Statistics. 2025;54(3):939-57.