Research Article
BibTex RIS Cite

On generalized distributions associated with singular partial differential operators

Year 2025, Volume: 54 Issue: 4, 1410 - 1425, 29.08.2025
https://doi.org/10.15672/hujms.1447127

Abstract

In this paper, we discuss various properties of the Riemann-Liouville operator over the generalized distributions $\mathcal{D}^{'}_w([0,+\infty[\times\mathbb{R})$ and other spaces. Next, we examine some properties of the convolution of the generalized distributions on the space $\mathcal{D}^{'}_w([0,+\infty[\times\mathbb{R})$.

References

  • [1] C. Baccar, N. B. Hamadi and L. T. Rachdi, Inversion formulas for Riemann-Liouville transform and its dual associated with singular partial diferential operators, Int. J. Math. Math. Sci. 2006, 1–26, 2006.
  • [2] C. Baccar, N. B. Hamadi and L. T. Rachdi, Best approximation for Weierstrass transform connected with Riemann-Liouville operator, Commun. Math. Anal. 5 (1), 65-83, 2008.
  • [3] C. Baccar and L. T. Rachdi, Spaces of DLp type and convolution product associated with the Riemann-Liouville operator, Bull. Math. Anal. Appl. 1(3), 16–41, 2009.
  • [4] A. Beurling, Sur les intégrales de Fourier absolument convergentes et leur applicationa une transformation fonctionelle. In: Ninth Scandinavian Mathematical Congress. 345–366, 1938.
  • [5] G. Björck, Linear partial differential operators and generalized distributions, Ark. Mat. 6, 351–407, 1966.
  • [6] A. Gasmi and A.EL. Garna, Properties of the linear multiplier operator for the Weinstein transform and applications, Electron. J. Differ. Equ. 2017, 1–18, 2017.
  • [7] K. Hleili, Calderóns reproducing formulas and extremal functions for the RiemannLiouville -multiplier operators, J. Pseudo-Differ. Oper. Appl. 9 (1), 125–141, 2018.
  • [8] K. Hleili, A Variation of uncertainty principles for the continuous wavelet transform connected with the RiemannLiouville operator, Afrika Matematika. 34 (4), pages 84, 2023.
  • [9] K. Hleili and S. Omri, An $L^p- L^q$ version of Miyachis theorem for the Riemann- Liouville operator, Indian Journal of Pure and Applied Mathematics. 46, 121–138, 2015.
  • [10] K. Hleili, S. Omri and L. T. Rachdi, Uncertainty principle for the Riemann-Liouville operator, Cubo. 13 (3), 91–115, 2011.
  • [11] L. Hörmander, Linear Partial Differential Operators, 116, Springer, Berlin, 1963.
  • [12] H. Komatsu, Ultradistributions, I: Structure theorems and a characterization. J. Fac. Sci. Tokyo (Ser. IA) 20, 25–105, 1973.
  • [13] R.S. Pathak, and A.B. Pandey, On Hankel transforms of ultradistributions, Appl. Anal. 20, 245–268, 1985.
  • [14] C. Roumieu, Ultra-distributions définies sur $\mathbb{R}^n$ et sur certaines classes de variétés différentiables, J. Anal. Math. 10, 153–192, 1962.
  • [15] H.M. Srivastava, S. Yadav and S.K. Upadhyay, The Weinstein transform associated with a family of generalized distributions, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117 (132), 1–32, 2023.
  • [16] S. K. Upadhyay and S. Yadav, Generalized Sobolev type Spaces Involving the Weinstein transform, Poincare Journal of Analysis and Applications. 10 (3), 1-18, 2023.
  • [17] K. Trimèche, Generalized Harmonic Analysis and Wavelet Packets, Ann. Probab. Gordon and Breach Publishing group, 2001.

Year 2025, Volume: 54 Issue: 4, 1410 - 1425, 29.08.2025
https://doi.org/10.15672/hujms.1447127

Abstract

References

  • [1] C. Baccar, N. B. Hamadi and L. T. Rachdi, Inversion formulas for Riemann-Liouville transform and its dual associated with singular partial diferential operators, Int. J. Math. Math. Sci. 2006, 1–26, 2006.
  • [2] C. Baccar, N. B. Hamadi and L. T. Rachdi, Best approximation for Weierstrass transform connected with Riemann-Liouville operator, Commun. Math. Anal. 5 (1), 65-83, 2008.
  • [3] C. Baccar and L. T. Rachdi, Spaces of DLp type and convolution product associated with the Riemann-Liouville operator, Bull. Math. Anal. Appl. 1(3), 16–41, 2009.
  • [4] A. Beurling, Sur les intégrales de Fourier absolument convergentes et leur applicationa une transformation fonctionelle. In: Ninth Scandinavian Mathematical Congress. 345–366, 1938.
  • [5] G. Björck, Linear partial differential operators and generalized distributions, Ark. Mat. 6, 351–407, 1966.
  • [6] A. Gasmi and A.EL. Garna, Properties of the linear multiplier operator for the Weinstein transform and applications, Electron. J. Differ. Equ. 2017, 1–18, 2017.
  • [7] K. Hleili, Calderóns reproducing formulas and extremal functions for the RiemannLiouville -multiplier operators, J. Pseudo-Differ. Oper. Appl. 9 (1), 125–141, 2018.
  • [8] K. Hleili, A Variation of uncertainty principles for the continuous wavelet transform connected with the RiemannLiouville operator, Afrika Matematika. 34 (4), pages 84, 2023.
  • [9] K. Hleili and S. Omri, An $L^p- L^q$ version of Miyachis theorem for the Riemann- Liouville operator, Indian Journal of Pure and Applied Mathematics. 46, 121–138, 2015.
  • [10] K. Hleili, S. Omri and L. T. Rachdi, Uncertainty principle for the Riemann-Liouville operator, Cubo. 13 (3), 91–115, 2011.
  • [11] L. Hörmander, Linear Partial Differential Operators, 116, Springer, Berlin, 1963.
  • [12] H. Komatsu, Ultradistributions, I: Structure theorems and a characterization. J. Fac. Sci. Tokyo (Ser. IA) 20, 25–105, 1973.
  • [13] R.S. Pathak, and A.B. Pandey, On Hankel transforms of ultradistributions, Appl. Anal. 20, 245–268, 1985.
  • [14] C. Roumieu, Ultra-distributions définies sur $\mathbb{R}^n$ et sur certaines classes de variétés différentiables, J. Anal. Math. 10, 153–192, 1962.
  • [15] H.M. Srivastava, S. Yadav and S.K. Upadhyay, The Weinstein transform associated with a family of generalized distributions, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117 (132), 1–32, 2023.
  • [16] S. K. Upadhyay and S. Yadav, Generalized Sobolev type Spaces Involving the Weinstein transform, Poincare Journal of Analysis and Applications. 10 (3), 1-18, 2023.
  • [17] K. Trimèche, Generalized Harmonic Analysis and Wavelet Packets, Ann. Probab. Gordon and Breach Publishing group, 2001.
There are 17 citations in total.

Details

Primary Language English
Subjects Lie Groups, Harmonic and Fourier Analysis
Journal Section Mathematics
Authors

Khaled Hleili 0000-0002-4736-3859

Manel Hleili 0009-0002-0547-0821

Early Pub Date January 27, 2025
Publication Date August 29, 2025
Submission Date March 4, 2024
Acceptance Date December 12, 2024
Published in Issue Year 2025 Volume: 54 Issue: 4

Cite

APA Hleili, K., & Hleili, M. (2025). On generalized distributions associated with singular partial differential operators. Hacettepe Journal of Mathematics and Statistics, 54(4), 1410-1425. https://doi.org/10.15672/hujms.1447127
AMA Hleili K, Hleili M. On generalized distributions associated with singular partial differential operators. Hacettepe Journal of Mathematics and Statistics. August 2025;54(4):1410-1425. doi:10.15672/hujms.1447127
Chicago Hleili, Khaled, and Manel Hleili. “On Generalized Distributions Associated With Singular Partial Differential Operators”. Hacettepe Journal of Mathematics and Statistics 54, no. 4 (August 2025): 1410-25. https://doi.org/10.15672/hujms.1447127.
EndNote Hleili K, Hleili M (August 1, 2025) On generalized distributions associated with singular partial differential operators. Hacettepe Journal of Mathematics and Statistics 54 4 1410–1425.
IEEE K. Hleili and M. Hleili, “On generalized distributions associated with singular partial differential operators”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, pp. 1410–1425, 2025, doi: 10.15672/hujms.1447127.
ISNAD Hleili, Khaled - Hleili, Manel. “On Generalized Distributions Associated With Singular Partial Differential Operators”. Hacettepe Journal of Mathematics and Statistics 54/4 (August2025), 1410-1425. https://doi.org/10.15672/hujms.1447127.
JAMA Hleili K, Hleili M. On generalized distributions associated with singular partial differential operators. Hacettepe Journal of Mathematics and Statistics. 2025;54:1410–1425.
MLA Hleili, Khaled and Manel Hleili. “On Generalized Distributions Associated With Singular Partial Differential Operators”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, 2025, pp. 1410-25, doi:10.15672/hujms.1447127.
Vancouver Hleili K, Hleili M. On generalized distributions associated with singular partial differential operators. Hacettepe Journal of Mathematics and Statistics. 2025;54(4):1410-25.