Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 4, 1329 - 1344, 29.08.2025
https://doi.org/10.15672/hujms.1468581

Abstract

References

  • [1] L. Alias, A. Ferrández and P. Lucas, Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying $\Delta x=Ax+B$, Pacific J. Math. 156 (2), 201-208, 1992.
  • [2] L.J. Alias and N. Gürbüz, An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata 121 (1), 113-127, 2006.
  • [3] M. Altın, A. Kazan and D.W. Yoon, Canal Hypersurfaces generated by Non-null Curves in Lorentz-Minkowski 4-Space, Bull. Korean Math. Soc. 60 (5), 1299-1320, 2023.
  • [4] B.-Y. Chen, Total Mean Curvature and Submanifold of Finite Type, World Scientific Publisher, 1984.
  • [5] B.-Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (2), 117- 337, 1996.
  • [6] B.-Y. Chen, J.-M. Morvan and T. Nore, Energy, tension and finite type maps, Kodai Math. J. 9 (3), 406-418, 1986.
  • [7] B.-Y. Chen and M. Petrovic, On spectral decomposition of immersions of finite type, Bull. Aust. Math. Soc. 44 (1), 117-129, 1991.
  • [8] B.-Y. Chen and P. Piccinni, Submanifolds with Finite Type Gauss Map, Bull. Austral. Math. Soc. 35 (2), 161-186, 1987.
  • [9] S.-Y. Cheng and S.-T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225, 195-204, 1977.
  • [10] M.K. Choi and Y.H. Kim, Characterization of the helicoid as ruled surface with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (4), 753-761, 2001.
  • [11] A. Kazan, M. Altın and N.C. Turgay, Rotational hypersurfaces in $\mathbb{E}^{4}_{1}$ with Generalized $L_{k}$ 1-Type Gauss Map, arXiv:2403.19671v1, 2024.
  • [12] A. Kelleci, Rotational surfaces with Cheng-Yau operator in Galilean 3-spaces, Hacet. J. Math. Stat. 50 (2), 365-376, 2021.
  • [13] D-S. Kim, J.R. Kim and Y.H. Kim, Cheng-Yau Operator and Gauss Map of Surfaces of Revolution, Bull. Malays. Math. Sci. Soc. 39 (4), 1319-1327, 2016.
  • [14] Y.H. Kim and N.C. Turgay, On the surfaces in $\mathbb{E}^{3}$ with $L_{1}$ pointwise 1-type Gauss map, (submitted).
  • [15] W. Kuhnel, Differential geometry: curves-surfaces-manifolds, American Mathematical Soc., Braunschweig, Wiesbaden, 1999.
  • [16] P. Lucas and H.F. Ramírez-Ospina, Hypersurfaces in the Lorentz-Minkowski space satisfying $L_{k}\psi=A\psi+b$, Geom. Dedicata 153 (1), 151-175, 2011.
  • [17] J. Qian, X. Fu and S.D. Jung, Dual associate null scrolls with generalized 1-type Gauss maps, Mathematics 8 (7), 1111, 2020.
  • [18] J. Qian, X. Fu, X. Tian and Y.H. Kim, Surfaces of Revolution and Canal Surfaces with Generalized Cheng-Yau 1-Type Gauss Maps, Mathematics 8 (10), 1728, 2020.
  • [19] J. Qian, M. Su, Y.H. Kim, Canal surfaces with generalized 1-type Gauss map, Rev. Union Mat. Argent. 62 (1), 199-211, 2021.
  • [20] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (4), 380-385, 1966.
  • [21] J. Walrave, Curves and surfaces in Minkowski space, Dissertation, K. U. Leuven, Fac. of Science, Leuven, 1995.
  • [22] B. Yang and X. Liu, Hypersurfaces satisfying $L_{r}x=Rx$ in sphere $S^{n+1}$ or hyperbolic space $H^{n+1}$, Proc. Indian Acad. Sci. (Math. Sci.) 119 (4), 487-499, 2009.
  • [23] R. Yegin Sen and U. Dursun, On submanifolds with 2-type pseudo-hyperbolic Gauss map in pseudo-hyperbolic space, Mediterr. J. Math. 14 (1), 1-20, 2017.
  • [24] D.W. Yoon, Rotation surfaces with finite type Gauss Map in $E^{4}$, Indian J. Pure. Appl. Math. 32 (12), 1803-1808, 2001.
  • [25] D.W. Yoon, D.S. Kim, Y.H. Kim and J.W. Lee, Hypersurfaces with generalized 1-type Gauss maps, Mathematics 6 (8), 130, 2018.
  • [26] D.W. Yoon, D.S. Kim, Y.H. Kim and J.W. Lee, Classifications of flat surfaces with generalized 1-type Gauss map in $\mathbb{L}^{3}$, Mediterr. J. Math. 15, 78, 2018.

Some classifications for Gauss map of Tubular hypersurfaces in $\mathbb{E}^{4}_{1}$ concerning linearized operators $\mathcal{L}_{k}$

Year 2025, Volume: 54 Issue: 4, 1329 - 1344, 29.08.2025
https://doi.org/10.15672/hujms.1468581

Abstract

In this study, we deal with the Gauss map of tubular hypersurfaces in 4-dimensional Lorentz-Minkowski space concerning the linearized operators $\mathcal{L}_{1}$ (Cheng-Yau) and $\mathcal{L}_{2}$. We obtain the $\mathcal{L}_{1}$ (Cheng-Yau) operator of the Gauss map of tubular hypersurfaces that are formed as the envelope of a family of pseudo hyperspheres{ or pseudo hyperbolic hyperspheres} whose centers lie on timelike or spacelike curves with non-null Frenet vectors in $\mathbb{E}^{4}_{1}$ and give some classifications for these hypersurfaces which have generalized $\mathcal{L}_{k}$ 1-type Gauss map, first kind $\mathcal{L}_{k}$-pointwise 1-type Gauss map, second kind $\mathcal{L}_{k}$-pointwise 1-type Gauss map and $\mathcal{L}_{k}$-harmonic Gauss map, $k\in\{1,2\}$.

References

  • [1] L. Alias, A. Ferrández and P. Lucas, Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying $\Delta x=Ax+B$, Pacific J. Math. 156 (2), 201-208, 1992.
  • [2] L.J. Alias and N. Gürbüz, An extension of Takahashi theorem for the linearized operators of the higher order mean curvatures, Geom. Dedicata 121 (1), 113-127, 2006.
  • [3] M. Altın, A. Kazan and D.W. Yoon, Canal Hypersurfaces generated by Non-null Curves in Lorentz-Minkowski 4-Space, Bull. Korean Math. Soc. 60 (5), 1299-1320, 2023.
  • [4] B.-Y. Chen, Total Mean Curvature and Submanifold of Finite Type, World Scientific Publisher, 1984.
  • [5] B.-Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (2), 117- 337, 1996.
  • [6] B.-Y. Chen, J.-M. Morvan and T. Nore, Energy, tension and finite type maps, Kodai Math. J. 9 (3), 406-418, 1986.
  • [7] B.-Y. Chen and M. Petrovic, On spectral decomposition of immersions of finite type, Bull. Aust. Math. Soc. 44 (1), 117-129, 1991.
  • [8] B.-Y. Chen and P. Piccinni, Submanifolds with Finite Type Gauss Map, Bull. Austral. Math. Soc. 35 (2), 161-186, 1987.
  • [9] S.-Y. Cheng and S.-T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225, 195-204, 1977.
  • [10] M.K. Choi and Y.H. Kim, Characterization of the helicoid as ruled surface with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (4), 753-761, 2001.
  • [11] A. Kazan, M. Altın and N.C. Turgay, Rotational hypersurfaces in $\mathbb{E}^{4}_{1}$ with Generalized $L_{k}$ 1-Type Gauss Map, arXiv:2403.19671v1, 2024.
  • [12] A. Kelleci, Rotational surfaces with Cheng-Yau operator in Galilean 3-spaces, Hacet. J. Math. Stat. 50 (2), 365-376, 2021.
  • [13] D-S. Kim, J.R. Kim and Y.H. Kim, Cheng-Yau Operator and Gauss Map of Surfaces of Revolution, Bull. Malays. Math. Sci. Soc. 39 (4), 1319-1327, 2016.
  • [14] Y.H. Kim and N.C. Turgay, On the surfaces in $\mathbb{E}^{3}$ with $L_{1}$ pointwise 1-type Gauss map, (submitted).
  • [15] W. Kuhnel, Differential geometry: curves-surfaces-manifolds, American Mathematical Soc., Braunschweig, Wiesbaden, 1999.
  • [16] P. Lucas and H.F. Ramírez-Ospina, Hypersurfaces in the Lorentz-Minkowski space satisfying $L_{k}\psi=A\psi+b$, Geom. Dedicata 153 (1), 151-175, 2011.
  • [17] J. Qian, X. Fu and S.D. Jung, Dual associate null scrolls with generalized 1-type Gauss maps, Mathematics 8 (7), 1111, 2020.
  • [18] J. Qian, X. Fu, X. Tian and Y.H. Kim, Surfaces of Revolution and Canal Surfaces with Generalized Cheng-Yau 1-Type Gauss Maps, Mathematics 8 (10), 1728, 2020.
  • [19] J. Qian, M. Su, Y.H. Kim, Canal surfaces with generalized 1-type Gauss map, Rev. Union Mat. Argent. 62 (1), 199-211, 2021.
  • [20] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (4), 380-385, 1966.
  • [21] J. Walrave, Curves and surfaces in Minkowski space, Dissertation, K. U. Leuven, Fac. of Science, Leuven, 1995.
  • [22] B. Yang and X. Liu, Hypersurfaces satisfying $L_{r}x=Rx$ in sphere $S^{n+1}$ or hyperbolic space $H^{n+1}$, Proc. Indian Acad. Sci. (Math. Sci.) 119 (4), 487-499, 2009.
  • [23] R. Yegin Sen and U. Dursun, On submanifolds with 2-type pseudo-hyperbolic Gauss map in pseudo-hyperbolic space, Mediterr. J. Math. 14 (1), 1-20, 2017.
  • [24] D.W. Yoon, Rotation surfaces with finite type Gauss Map in $E^{4}$, Indian J. Pure. Appl. Math. 32 (12), 1803-1808, 2001.
  • [25] D.W. Yoon, D.S. Kim, Y.H. Kim and J.W. Lee, Hypersurfaces with generalized 1-type Gauss maps, Mathematics 6 (8), 130, 2018.
  • [26] D.W. Yoon, D.S. Kim, Y.H. Kim and J.W. Lee, Classifications of flat surfaces with generalized 1-type Gauss map in $\mathbb{L}^{3}$, Mediterr. J. Math. 15, 78, 2018.
There are 26 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Mathematics
Authors

Ahmet Kazan 0000-0002-1959-6102

Mustafa Altın 0000-0001-5544-5910

Nurettin Cenk Turgay 0000-0002-0171-3876

Early Pub Date January 27, 2025
Publication Date August 29, 2025
Submission Date April 15, 2024
Acceptance Date November 21, 2024
Published in Issue Year 2025 Volume: 54 Issue: 4

Cite

APA Kazan, A., Altın, M., & Turgay, N. C. (2025). Some classifications for Gauss map of Tubular hypersurfaces in $\mathbb{E}^{4}_{1}$ concerning linearized operators $\mathcal{L}_{k}$. Hacettepe Journal of Mathematics and Statistics, 54(4), 1329-1344. https://doi.org/10.15672/hujms.1468581
AMA Kazan A, Altın M, Turgay NC. Some classifications for Gauss map of Tubular hypersurfaces in $\mathbb{E}^{4}_{1}$ concerning linearized operators $\mathcal{L}_{k}$. Hacettepe Journal of Mathematics and Statistics. August 2025;54(4):1329-1344. doi:10.15672/hujms.1468581
Chicago Kazan, Ahmet, Mustafa Altın, and Nurettin Cenk Turgay. “Some Classifications for Gauss Map of Tubular Hypersurfaces in $\mathbb{E}^{4}_{1}$ Concerning Linearized Operators $\mathcal{L}_{k}$”. Hacettepe Journal of Mathematics and Statistics 54, no. 4 (August 2025): 1329-44. https://doi.org/10.15672/hujms.1468581.
EndNote Kazan A, Altın M, Turgay NC (August 1, 2025) Some classifications for Gauss map of Tubular hypersurfaces in $\mathbb{E}^{4}_{1}$ concerning linearized operators $\mathcal{L}_{k}$. Hacettepe Journal of Mathematics and Statistics 54 4 1329–1344.
IEEE A. Kazan, M. Altın, and N. C. Turgay, “Some classifications for Gauss map of Tubular hypersurfaces in $\mathbb{E}^{4}_{1}$ concerning linearized operators $\mathcal{L}_{k}$”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, pp. 1329–1344, 2025, doi: 10.15672/hujms.1468581.
ISNAD Kazan, Ahmet et al. “Some Classifications for Gauss Map of Tubular Hypersurfaces in $\mathbb{E}^{4}_{1}$ Concerning Linearized Operators $\mathcal{L}_{k}$”. Hacettepe Journal of Mathematics and Statistics 54/4 (August2025), 1329-1344. https://doi.org/10.15672/hujms.1468581.
JAMA Kazan A, Altın M, Turgay NC. Some classifications for Gauss map of Tubular hypersurfaces in $\mathbb{E}^{4}_{1}$ concerning linearized operators $\mathcal{L}_{k}$. Hacettepe Journal of Mathematics and Statistics. 2025;54:1329–1344.
MLA Kazan, Ahmet et al. “Some Classifications for Gauss Map of Tubular Hypersurfaces in $\mathbb{E}^{4}_{1}$ Concerning Linearized Operators $\mathcal{L}_{k}$”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, 2025, pp. 1329-44, doi:10.15672/hujms.1468581.
Vancouver Kazan A, Altın M, Turgay NC. Some classifications for Gauss map of Tubular hypersurfaces in $\mathbb{E}^{4}_{1}$ concerning linearized operators $\mathcal{L}_{k}$. Hacettepe Journal of Mathematics and Statistics. 2025;54(4):1329-44.