Year 2025,
Volume: 54 Issue: 4, 1236 - 1256, 29.08.2025
Jananı B B
,
V Ravichandran
,
Nisha Bohra
References
-
[1] R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the
lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218, no. 11,
6557–6565, 2012.
-
[2] K. Arora and S. S. Kumar, Starlike functions associated with a petal shaped domain,
Bull. Korean Math. Soc. 59, no. 4, 993–1010, 2022.
-
[3] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike
functions associated with the sine function, Bull. Iranian Math. Soc. 45 , no. 1, 213–
232, 2019.
-
[4] S. Gandhi and V. Ravichandran, Starlike functions associated with a lune, Asian-Eur.
J. Math. 10, no. 4, 1750064, 12 pp, 2017.
-
[5] K. Gangania and S. S. Kumar, $\mathcal{S}^*(\phi)$ and $\mathcal{C}(\phi)$-radii for some special functions, Iran.
J. Sci. Technol. Trans. A Sci. 46, no. 3, 955–966, 2022.
-
[6] P. Goel and S. Sivaprasad Kumar, Certain class of starlike functions associated with
modified sigmoid function, Bull. Malays. Math. Sci. Soc. 43, no. 1, 957–991, 2020.
-
[7] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56, no. 1, 87–92,
1991.
-
[8] P. Gupta, S. Nagpal and V. Ravichandran, Inclusion relations and radius problems
for a subclass of starlike functions, J. Korean Math. Soc. 58, no. 5, 1147–1180, 2021.
-
[9] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1, 169–185, 1952.
-
[10] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a
rational function, Southeast Asian Bull. Math. 40, no. 2, 199–212, 2016.
-
[11] A. Lecko, V. Ravichandran and A. Sebastian, Starlikeness of certain non-univalent
functions, Anal. Math. Phys. 11, no. 4, Paper No. 163, 23 pp, 2021.
-
[12] A. Lecko and B. Śmiarowska, Classes of analytic functions related to Blaschke products,
Filomat 32, no. 18, 6289–6309, 2018.
-
[13] S. K. Lee, K. Khatter and V. Ravichandran, Radius of starlikeness for classes of
analytic functions, Bull. Malays. Math. Sci. Soc. 43, no. 6, 4469–4493, 2020.
-
[14] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent
functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992),
157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA.
-
[15] T. H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer.
Math. Soc. 14, 514–520, 1963.
-
[16] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike
functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38, no. 1,
365–386, 2015.
-
[17] V. Paatero, Uber die Konforme Abbildungen von gebieten, deren rander von beschrakter
Drehung Sind, Ann. Acad. Sci. Fenn. Ser. A 33, 177, 1931.
-
[18] V. Paatero, Uber gebiete von beschrankter, Ann. Acad. Sci. Fenn. Ser. A 37, 120, 1933.
-
[19] R. K. Raina and J. Sokół, Some properties related to a certain class of starlike functions,
C. R. Math. Acad. Sci. Paris 353, no. 11, 973–978, 2015.
-
[20] V. Ravichandran, F. Rønning and T. N. Shanmugam, Radius of convexity and radius
of starlikeness for some classes of analytic functions, Complex Variables Theory Appl.
33, no. 1-4, 265–280, 1997.
-
[21] S. Ruscheweyh, Convolutions in geometric function theory, Séminaire de Mathématiques
Supérieures, 83, Presses de l’Université de Montréal, Montreal, QC, 1982.
-
[22] A. Sebastian and V. Ravichandran, Radius of starlikeness of certain analytic functions,
Math. Slovaca 71, no. 1, 83–104, 2021.
-
[23] T. N. Shanmugam and V. Ravichandran, Certain properties of uniformly convex
functions, in Computational methods and function theory 1994 (Penang), 319–324,
Ser. Approx. Decompos., 5, World Sci. Publ., River Edge, NJ.
-
[24] K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a
cardioid, Afr. Mat. 27, no. 5-6, 923–939, 2016.
-
[25] T. B. Sheil-Small, The Hadamard product and linear transformations of classes of
analytic functions, J. Analyse Math. 34, 204–239, 1979.
-
[26] J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike
functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. No. 19, 101–105, 1996.
-
[27] L. A. Wani and A. Swaminathan, Radius problems for functions associated with a
nephroid domain, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM
114, no. 4, Paper No. 178, 20 pp, 2020.
-
[28] L. A. Wani and A. Swaminathan, Starlike and convex functions associated with a
nephroid domain, Bull. Malays. Math. Sci. Soc. 44, no. 1, 79–104, 2021.
Radii of convexity associated with various subclasses of analytic functions for functions related to Kaplan classes
Year 2025,
Volume: 54 Issue: 4, 1236 - 1256, 29.08.2025
Jananı B B
,
V Ravichandran
,
Nisha Bohra
Abstract
A normalized analytic function $f$ defined on the open unit disc $\mathbb{D}$ is called Ma-Minda convex if $ 1+zf''(z)/f'(z)$ is subordinate to the function $\varphi$. For $ 0\leqslant\alpha\leqslant\beta$, the Kaplan class $\mathcal{K}(\alpha,\beta)$ of type $\alpha$ and $\beta$ consists of normalized analytic functions of the form $p^\alpha g$ defined on $\mathbb{D}$ where $p$ with $p(0)=1$ is an analytic function taking values in the right half-plane and $g$ is an analytic function with $g(0)=1$ satisfying Re$(zg'(z)/g(z))>(\alpha-\beta)/2$. For functions $f$ with $f'\in \mathcal{K}(\alpha,\beta)$, we obtain the radius of Ma-Minda convexity for various choices of $\varphi$. The radius of lemniscate convexity, lune convexity, nephroid convexity, exponential convexity and several other radius estimates are examined. The results obtained are sharp.
References
-
[1] R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the
lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218, no. 11,
6557–6565, 2012.
-
[2] K. Arora and S. S. Kumar, Starlike functions associated with a petal shaped domain,
Bull. Korean Math. Soc. 59, no. 4, 993–1010, 2022.
-
[3] N. E. Cho, V. Kumar, S. S. Kumar and V. Ravichandran, Radius problems for starlike
functions associated with the sine function, Bull. Iranian Math. Soc. 45 , no. 1, 213–
232, 2019.
-
[4] S. Gandhi and V. Ravichandran, Starlike functions associated with a lune, Asian-Eur.
J. Math. 10, no. 4, 1750064, 12 pp, 2017.
-
[5] K. Gangania and S. S. Kumar, $\mathcal{S}^*(\phi)$ and $\mathcal{C}(\phi)$-radii for some special functions, Iran.
J. Sci. Technol. Trans. A Sci. 46, no. 3, 955–966, 2022.
-
[6] P. Goel and S. Sivaprasad Kumar, Certain class of starlike functions associated with
modified sigmoid function, Bull. Malays. Math. Sci. Soc. 43, no. 1, 957–991, 2020.
-
[7] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56, no. 1, 87–92,
1991.
-
[8] P. Gupta, S. Nagpal and V. Ravichandran, Inclusion relations and radius problems
for a subclass of starlike functions, J. Korean Math. Soc. 58, no. 5, 1147–1180, 2021.
-
[9] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1, 169–185, 1952.
-
[10] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a
rational function, Southeast Asian Bull. Math. 40, no. 2, 199–212, 2016.
-
[11] A. Lecko, V. Ravichandran and A. Sebastian, Starlikeness of certain non-univalent
functions, Anal. Math. Phys. 11, no. 4, Paper No. 163, 23 pp, 2021.
-
[12] A. Lecko and B. Śmiarowska, Classes of analytic functions related to Blaschke products,
Filomat 32, no. 18, 6289–6309, 2018.
-
[13] S. K. Lee, K. Khatter and V. Ravichandran, Radius of starlikeness for classes of
analytic functions, Bull. Malays. Math. Sci. Soc. 43, no. 6, 4469–4493, 2020.
-
[14] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent
functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992),
157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA.
-
[15] T. H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer.
Math. Soc. 14, 514–520, 1963.
-
[16] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike
functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38, no. 1,
365–386, 2015.
-
[17] V. Paatero, Uber die Konforme Abbildungen von gebieten, deren rander von beschrakter
Drehung Sind, Ann. Acad. Sci. Fenn. Ser. A 33, 177, 1931.
-
[18] V. Paatero, Uber gebiete von beschrankter, Ann. Acad. Sci. Fenn. Ser. A 37, 120, 1933.
-
[19] R. K. Raina and J. Sokół, Some properties related to a certain class of starlike functions,
C. R. Math. Acad. Sci. Paris 353, no. 11, 973–978, 2015.
-
[20] V. Ravichandran, F. Rønning and T. N. Shanmugam, Radius of convexity and radius
of starlikeness for some classes of analytic functions, Complex Variables Theory Appl.
33, no. 1-4, 265–280, 1997.
-
[21] S. Ruscheweyh, Convolutions in geometric function theory, Séminaire de Mathématiques
Supérieures, 83, Presses de l’Université de Montréal, Montreal, QC, 1982.
-
[22] A. Sebastian and V. Ravichandran, Radius of starlikeness of certain analytic functions,
Math. Slovaca 71, no. 1, 83–104, 2021.
-
[23] T. N. Shanmugam and V. Ravichandran, Certain properties of uniformly convex
functions, in Computational methods and function theory 1994 (Penang), 319–324,
Ser. Approx. Decompos., 5, World Sci. Publ., River Edge, NJ.
-
[24] K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a
cardioid, Afr. Mat. 27, no. 5-6, 923–939, 2016.
-
[25] T. B. Sheil-Small, The Hadamard product and linear transformations of classes of
analytic functions, J. Analyse Math. 34, 204–239, 1979.
-
[26] J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike
functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. No. 19, 101–105, 1996.
-
[27] L. A. Wani and A. Swaminathan, Radius problems for functions associated with a
nephroid domain, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM
114, no. 4, Paper No. 178, 20 pp, 2020.
-
[28] L. A. Wani and A. Swaminathan, Starlike and convex functions associated with a
nephroid domain, Bull. Malays. Math. Sci. Soc. 44, no. 1, 79–104, 2021.