Year 2025,
Volume: 54 Issue: 4, 1395 - 1409, 29.08.2025
José Manuel Casas
,
Emzar Khmaladze
,
Manuel Ladra
Project Number
PID2020-115155GB-I00, FR-23-271 and ED431C 2023/31
References
-
[1] M. Barr and J. Beck, Homology and standard constructions, Seminar on triples and
categorical homology theory (ETH, Zürich, 1966/67), Lecture Notes in Math. 80,
245–335, 1969.
-
[2] F. Borceux and D. Bourn, Mal’cev, protomodular, homological and semi-abelian categories,
Math. Appl. 566, Kluwer Academic Publishers, Dordrecht, 2004.
-
[3] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology
26 (3), 311–335, 1987.
-
[4] J.M. Casas, Homology with trivial coefficients and universal central extension of algebras
with bracket, Comm. Algebra 35 (8), 2431–2449, 2007.
-
[5] J M. Casas, On solvability and nilpotency of algebras with bracket, J. Korean Math.
Soc. 54 (2), 647–662, 2017.
-
[6] J.M. Casas, E. Khmaladze and M. Ladra, Wells-type exact sequence and crossed
extensions of algebras with bracket, Forum Math. 36 (6), 15651584, 2024.
-
[7] J.M. Casas, E. Khmaladze and N. Pacheco Rego, A non-abelian Hom-Leibniz tensor
product and applications, Linear Multilinear Algebra 66 (6), 1133–1152, 2018.
-
[8] J.M. Casas and T. Pirashvili, Algebras with bracket, Manuscripta Math. 119 (1),
1–15, 2006.
-
[9] J.M. Casas and T. Van der Linden, Universal central extensions in semi-abelian categories,
Appl. Categ. Structures 22 (1), 253–268, 2014.
-
[10] P. Dedecker and A.S.-T. Lue, A nonabelian two-dimensional cohomology for associative
algebras, Bull. Amer. Math. Soc. 72, 1044–1050, 1966.
-
[11] D. di Micco and T. Van der Linden, An intrinsic approach to the non-abelian tensor
product via internal crossed squares, Theory Appl. Categ. 35, 1268–1311, 2020.
-
[12] G. Donadze, N. Inassaridze, E. Khmaladze and M. Ladra, Cyclic homologies of crossed
modules of algebras, J. Noncommut. Geom. 6 (4), 749–771, 2012.
-
[13] G.J. Ellis, Non-abelian exterior product of Lie algebras and an exact sequence in the
homology of Lie algebras, J. Pure Appl. Algebra 46, 111–115, 1987.
-
[14] G.J. Ellis, A non-abelian tensor product of Lie algebras, Glasgow Math. J. 33 (1),
101–120, 1991.
-
[15] X. García-Martínez, E. Khmaladze and M. Ladra, Non-abelian tensor product and
homology of Lie superalgebras, J. Algebra 440, 464–488, 2015.
-
[16] A.V. Gnedbaye, A non-abelian tensor product of Leibniz algebras, Ann. Inst. Fourier
(Grenoble) 49, 1149–1177, 1999.
-
[17] D. Guin, Cohomologie et homologie non-abéliennes des groupes, J. Pure Appl. Algebra
50, 109–137, 1988.
-
[18] D. Guin, Cohomologie des algèbres de Lie croisées et K-théorie de Milnor additive,
Ann. Inst. Fourier (Grenoble) 45, 93–118, 1995.
-
[19] P.J. Higgins, Groups with multiple operators, Proc. London Math. Soc. 3 (3),
366–416, 1956.
-
[20] H. Inassaridze and N. Inassaridze, Non-abelian homology of groups, K-Theory J. 18,
1–17, 1999.
-
[21] N. Inassaridze, Nonabelian tensor products and nonabelian homology of groups, J.
Pure Appl. Algebra 112 (2), 191–205, 1996.
-
[22] G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra
168 (2-3), 367–386, 2002.
-
[23] I. V. Kanatchikov, On field theoretic generalizations of a Poisson algebras, Rep. Math.
Phys. 40 (2), 225–234, 1997.
-
[24] J.-L. Loday, Spaces with finitely many non-trivial homotopy groups, J. Pure Appl.
Algebra 24 (2), 179–202, 1982.
-
[25] F.I. Michael,A note on the Five Lemma, Appl. Categ. Structures 21 (5), 441–448,
2013.
-
[26] D. Quillen, On the (Co-)homology of commutative rings, Proc. Sympos. Pure Math.
17, 65–87, 1970.
-
[27] Ch.A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math.
38, Cambridge University Press, Cambridge, 1994.
A non-abelian tensor product of algebras with bracket
Year 2025,
Volume: 54 Issue: 4, 1395 - 1409, 29.08.2025
José Manuel Casas
,
Emzar Khmaladze
,
Manuel Ladra
Abstract
We introduce and study a non-abelian tensor product of two algebras with bracket with compatible actions on each other. We investigate its applications to the universal central extensions and the low-dimensional homology of perfect algebras with bracket.
Project Number
PID2020-115155GB-I00, FR-23-271 and ED431C 2023/31
References
-
[1] M. Barr and J. Beck, Homology and standard constructions, Seminar on triples and
categorical homology theory (ETH, Zürich, 1966/67), Lecture Notes in Math. 80,
245–335, 1969.
-
[2] F. Borceux and D. Bourn, Mal’cev, protomodular, homological and semi-abelian categories,
Math. Appl. 566, Kluwer Academic Publishers, Dordrecht, 2004.
-
[3] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology
26 (3), 311–335, 1987.
-
[4] J.M. Casas, Homology with trivial coefficients and universal central extension of algebras
with bracket, Comm. Algebra 35 (8), 2431–2449, 2007.
-
[5] J M. Casas, On solvability and nilpotency of algebras with bracket, J. Korean Math.
Soc. 54 (2), 647–662, 2017.
-
[6] J.M. Casas, E. Khmaladze and M. Ladra, Wells-type exact sequence and crossed
extensions of algebras with bracket, Forum Math. 36 (6), 15651584, 2024.
-
[7] J.M. Casas, E. Khmaladze and N. Pacheco Rego, A non-abelian Hom-Leibniz tensor
product and applications, Linear Multilinear Algebra 66 (6), 1133–1152, 2018.
-
[8] J.M. Casas and T. Pirashvili, Algebras with bracket, Manuscripta Math. 119 (1),
1–15, 2006.
-
[9] J.M. Casas and T. Van der Linden, Universal central extensions in semi-abelian categories,
Appl. Categ. Structures 22 (1), 253–268, 2014.
-
[10] P. Dedecker and A.S.-T. Lue, A nonabelian two-dimensional cohomology for associative
algebras, Bull. Amer. Math. Soc. 72, 1044–1050, 1966.
-
[11] D. di Micco and T. Van der Linden, An intrinsic approach to the non-abelian tensor
product via internal crossed squares, Theory Appl. Categ. 35, 1268–1311, 2020.
-
[12] G. Donadze, N. Inassaridze, E. Khmaladze and M. Ladra, Cyclic homologies of crossed
modules of algebras, J. Noncommut. Geom. 6 (4), 749–771, 2012.
-
[13] G.J. Ellis, Non-abelian exterior product of Lie algebras and an exact sequence in the
homology of Lie algebras, J. Pure Appl. Algebra 46, 111–115, 1987.
-
[14] G.J. Ellis, A non-abelian tensor product of Lie algebras, Glasgow Math. J. 33 (1),
101–120, 1991.
-
[15] X. García-Martínez, E. Khmaladze and M. Ladra, Non-abelian tensor product and
homology of Lie superalgebras, J. Algebra 440, 464–488, 2015.
-
[16] A.V. Gnedbaye, A non-abelian tensor product of Leibniz algebras, Ann. Inst. Fourier
(Grenoble) 49, 1149–1177, 1999.
-
[17] D. Guin, Cohomologie et homologie non-abéliennes des groupes, J. Pure Appl. Algebra
50, 109–137, 1988.
-
[18] D. Guin, Cohomologie des algèbres de Lie croisées et K-théorie de Milnor additive,
Ann. Inst. Fourier (Grenoble) 45, 93–118, 1995.
-
[19] P.J. Higgins, Groups with multiple operators, Proc. London Math. Soc. 3 (3),
366–416, 1956.
-
[20] H. Inassaridze and N. Inassaridze, Non-abelian homology of groups, K-Theory J. 18,
1–17, 1999.
-
[21] N. Inassaridze, Nonabelian tensor products and nonabelian homology of groups, J.
Pure Appl. Algebra 112 (2), 191–205, 1996.
-
[22] G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra
168 (2-3), 367–386, 2002.
-
[23] I. V. Kanatchikov, On field theoretic generalizations of a Poisson algebras, Rep. Math.
Phys. 40 (2), 225–234, 1997.
-
[24] J.-L. Loday, Spaces with finitely many non-trivial homotopy groups, J. Pure Appl.
Algebra 24 (2), 179–202, 1982.
-
[25] F.I. Michael,A note on the Five Lemma, Appl. Categ. Structures 21 (5), 441–448,
2013.
-
[26] D. Quillen, On the (Co-)homology of commutative rings, Proc. Sympos. Pure Math.
17, 65–87, 1970.
-
[27] Ch.A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math.
38, Cambridge University Press, Cambridge, 1994.