Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 4, 1395 - 1409, 29.08.2025
https://doi.org/10.15672/hujms.1535583

Abstract

Project Number

PID2020-115155GB-I00, FR-23-271 and ED431C 2023/31

References

  • [1] M. Barr and J. Beck, Homology and standard constructions, Seminar on triples and categorical homology theory (ETH, Zürich, 1966/67), Lecture Notes in Math. 80, 245–335, 1969.
  • [2] F. Borceux and D. Bourn, Mal’cev, protomodular, homological and semi-abelian categories, Math. Appl. 566, Kluwer Academic Publishers, Dordrecht, 2004.
  • [3] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (3), 311–335, 1987.
  • [4] J.M. Casas, Homology with trivial coefficients and universal central extension of algebras with bracket, Comm. Algebra 35 (8), 2431–2449, 2007.
  • [5] J M. Casas, On solvability and nilpotency of algebras with bracket, J. Korean Math. Soc. 54 (2), 647–662, 2017.
  • [6] J.M. Casas, E. Khmaladze and M. Ladra, Wells-type exact sequence and crossed extensions of algebras with bracket, Forum Math. 36 (6), 15651584, 2024.
  • [7] J.M. Casas, E. Khmaladze and N. Pacheco Rego, A non-abelian Hom-Leibniz tensor product and applications, Linear Multilinear Algebra 66 (6), 1133–1152, 2018.
  • [8] J.M. Casas and T. Pirashvili, Algebras with bracket, Manuscripta Math. 119 (1), 1–15, 2006.
  • [9] J.M. Casas and T. Van der Linden, Universal central extensions in semi-abelian categories, Appl. Categ. Structures 22 (1), 253–268, 2014.
  • [10] P. Dedecker and A.S.-T. Lue, A nonabelian two-dimensional cohomology for associative algebras, Bull. Amer. Math. Soc. 72, 1044–1050, 1966.
  • [11] D. di Micco and T. Van der Linden, An intrinsic approach to the non-abelian tensor product via internal crossed squares, Theory Appl. Categ. 35, 1268–1311, 2020.
  • [12] G. Donadze, N. Inassaridze, E. Khmaladze and M. Ladra, Cyclic homologies of crossed modules of algebras, J. Noncommut. Geom. 6 (4), 749–771, 2012.
  • [13] G.J. Ellis, Non-abelian exterior product of Lie algebras and an exact sequence in the homology of Lie algebras, J. Pure Appl. Algebra 46, 111–115, 1987.
  • [14] G.J. Ellis, A non-abelian tensor product of Lie algebras, Glasgow Math. J. 33 (1), 101–120, 1991.
  • [15] X. García-Martínez, E. Khmaladze and M. Ladra, Non-abelian tensor product and homology of Lie superalgebras, J. Algebra 440, 464–488, 2015.
  • [16] A.V. Gnedbaye, A non-abelian tensor product of Leibniz algebras, Ann. Inst. Fourier (Grenoble) 49, 1149–1177, 1999.
  • [17] D. Guin, Cohomologie et homologie non-abéliennes des groupes, J. Pure Appl. Algebra 50, 109–137, 1988.
  • [18] D. Guin, Cohomologie des algèbres de Lie croisées et K-théorie de Milnor additive, Ann. Inst. Fourier (Grenoble) 45, 93–118, 1995.
  • [19] P.J. Higgins, Groups with multiple operators, Proc. London Math. Soc. 3 (3), 366–416, 1956.
  • [20] H. Inassaridze and N. Inassaridze, Non-abelian homology of groups, K-Theory J. 18, 1–17, 1999.
  • [21] N. Inassaridze, Nonabelian tensor products and nonabelian homology of groups, J. Pure Appl. Algebra 112 (2), 191–205, 1996.
  • [22] G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra 168 (2-3), 367–386, 2002.
  • [23] I. V. Kanatchikov, On field theoretic generalizations of a Poisson algebras, Rep. Math. Phys. 40 (2), 225–234, 1997.
  • [24] J.-L. Loday, Spaces with finitely many non-trivial homotopy groups, J. Pure Appl. Algebra 24 (2), 179–202, 1982.
  • [25] F.I. Michael,A note on the Five Lemma, Appl. Categ. Structures 21 (5), 441–448, 2013.
  • [26] D. Quillen, On the (Co-)homology of commutative rings, Proc. Sympos. Pure Math. 17, 65–87, 1970.
  • [27] Ch.A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math. 38, Cambridge University Press, Cambridge, 1994.

A non-abelian tensor product of algebras with bracket

Year 2025, Volume: 54 Issue: 4, 1395 - 1409, 29.08.2025
https://doi.org/10.15672/hujms.1535583

Abstract

We introduce and study a non-abelian tensor product of two algebras with bracket with compatible actions on each other. We investigate its applications to the universal central extensions and the low-dimensional homology of perfect algebras with bracket.

Project Number

PID2020-115155GB-I00, FR-23-271 and ED431C 2023/31

References

  • [1] M. Barr and J. Beck, Homology and standard constructions, Seminar on triples and categorical homology theory (ETH, Zürich, 1966/67), Lecture Notes in Math. 80, 245–335, 1969.
  • [2] F. Borceux and D. Bourn, Mal’cev, protomodular, homological and semi-abelian categories, Math. Appl. 566, Kluwer Academic Publishers, Dordrecht, 2004.
  • [3] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (3), 311–335, 1987.
  • [4] J.M. Casas, Homology with trivial coefficients and universal central extension of algebras with bracket, Comm. Algebra 35 (8), 2431–2449, 2007.
  • [5] J M. Casas, On solvability and nilpotency of algebras with bracket, J. Korean Math. Soc. 54 (2), 647–662, 2017.
  • [6] J.M. Casas, E. Khmaladze and M. Ladra, Wells-type exact sequence and crossed extensions of algebras with bracket, Forum Math. 36 (6), 15651584, 2024.
  • [7] J.M. Casas, E. Khmaladze and N. Pacheco Rego, A non-abelian Hom-Leibniz tensor product and applications, Linear Multilinear Algebra 66 (6), 1133–1152, 2018.
  • [8] J.M. Casas and T. Pirashvili, Algebras with bracket, Manuscripta Math. 119 (1), 1–15, 2006.
  • [9] J.M. Casas and T. Van der Linden, Universal central extensions in semi-abelian categories, Appl. Categ. Structures 22 (1), 253–268, 2014.
  • [10] P. Dedecker and A.S.-T. Lue, A nonabelian two-dimensional cohomology for associative algebras, Bull. Amer. Math. Soc. 72, 1044–1050, 1966.
  • [11] D. di Micco and T. Van der Linden, An intrinsic approach to the non-abelian tensor product via internal crossed squares, Theory Appl. Categ. 35, 1268–1311, 2020.
  • [12] G. Donadze, N. Inassaridze, E. Khmaladze and M. Ladra, Cyclic homologies of crossed modules of algebras, J. Noncommut. Geom. 6 (4), 749–771, 2012.
  • [13] G.J. Ellis, Non-abelian exterior product of Lie algebras and an exact sequence in the homology of Lie algebras, J. Pure Appl. Algebra 46, 111–115, 1987.
  • [14] G.J. Ellis, A non-abelian tensor product of Lie algebras, Glasgow Math. J. 33 (1), 101–120, 1991.
  • [15] X. García-Martínez, E. Khmaladze and M. Ladra, Non-abelian tensor product and homology of Lie superalgebras, J. Algebra 440, 464–488, 2015.
  • [16] A.V. Gnedbaye, A non-abelian tensor product of Leibniz algebras, Ann. Inst. Fourier (Grenoble) 49, 1149–1177, 1999.
  • [17] D. Guin, Cohomologie et homologie non-abéliennes des groupes, J. Pure Appl. Algebra 50, 109–137, 1988.
  • [18] D. Guin, Cohomologie des algèbres de Lie croisées et K-théorie de Milnor additive, Ann. Inst. Fourier (Grenoble) 45, 93–118, 1995.
  • [19] P.J. Higgins, Groups with multiple operators, Proc. London Math. Soc. 3 (3), 366–416, 1956.
  • [20] H. Inassaridze and N. Inassaridze, Non-abelian homology of groups, K-Theory J. 18, 1–17, 1999.
  • [21] N. Inassaridze, Nonabelian tensor products and nonabelian homology of groups, J. Pure Appl. Algebra 112 (2), 191–205, 1996.
  • [22] G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra 168 (2-3), 367–386, 2002.
  • [23] I. V. Kanatchikov, On field theoretic generalizations of a Poisson algebras, Rep. Math. Phys. 40 (2), 225–234, 1997.
  • [24] J.-L. Loday, Spaces with finitely many non-trivial homotopy groups, J. Pure Appl. Algebra 24 (2), 179–202, 1982.
  • [25] F.I. Michael,A note on the Five Lemma, Appl. Categ. Structures 21 (5), 441–448, 2013.
  • [26] D. Quillen, On the (Co-)homology of commutative rings, Proc. Sympos. Pure Math. 17, 65–87, 1970.
  • [27] Ch.A. Weibel, An introduction to homological algebra, Cambridge Stud. Adv. Math. 38, Cambridge University Press, Cambridge, 1994.
There are 27 citations in total.

Details

Primary Language English
Subjects Category Theory, K Theory, Homological Algebra
Journal Section Mathematics
Authors

José Manuel Casas 0000-0002-6556-6131

Emzar Khmaladze 0000-0001-9492-982X

Manuel Ladra 0000-0002-0543-4508

Project Number PID2020-115155GB-I00, FR-23-271 and ED431C 2023/31
Early Pub Date January 27, 2025
Publication Date August 29, 2025
Submission Date August 19, 2024
Acceptance Date December 10, 2024
Published in Issue Year 2025 Volume: 54 Issue: 4

Cite

APA Casas, J. M., Khmaladze, E., & Ladra, M. (2025). A non-abelian tensor product of algebras with bracket. Hacettepe Journal of Mathematics and Statistics, 54(4), 1395-1409. https://doi.org/10.15672/hujms.1535583
AMA Casas JM, Khmaladze E, Ladra M. A non-abelian tensor product of algebras with bracket. Hacettepe Journal of Mathematics and Statistics. August 2025;54(4):1395-1409. doi:10.15672/hujms.1535583
Chicago Casas, José Manuel, Emzar Khmaladze, and Manuel Ladra. “A Non-Abelian Tensor Product of Algebras With Bracket”. Hacettepe Journal of Mathematics and Statistics 54, no. 4 (August 2025): 1395-1409. https://doi.org/10.15672/hujms.1535583.
EndNote Casas JM, Khmaladze E, Ladra M (August 1, 2025) A non-abelian tensor product of algebras with bracket. Hacettepe Journal of Mathematics and Statistics 54 4 1395–1409.
IEEE J. M. Casas, E. Khmaladze, and M. Ladra, “A non-abelian tensor product of algebras with bracket”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, pp. 1395–1409, 2025, doi: 10.15672/hujms.1535583.
ISNAD Casas, José Manuel et al. “A Non-Abelian Tensor Product of Algebras With Bracket”. Hacettepe Journal of Mathematics and Statistics 54/4 (August2025), 1395-1409. https://doi.org/10.15672/hujms.1535583.
JAMA Casas JM, Khmaladze E, Ladra M. A non-abelian tensor product of algebras with bracket. Hacettepe Journal of Mathematics and Statistics. 2025;54:1395–1409.
MLA Casas, José Manuel et al. “A Non-Abelian Tensor Product of Algebras With Bracket”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, 2025, pp. 1395-09, doi:10.15672/hujms.1535583.
Vancouver Casas JM, Khmaladze E, Ladra M. A non-abelian tensor product of algebras with bracket. Hacettepe Journal of Mathematics and Statistics. 2025;54(4):1395-409.