Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 4, 1637 - 1656, 29.08.2025
https://doi.org/10.15672/hujms.1585762

Abstract

References

  • [1] A. Chatterjee, G. N. Singh, A. Bandyopadhyay and P. Mukhopadhyay, A general procedure for estimating population variance in successive sampling using fuzzy tools, HJMS, 46(4), 695-712,2017.
  • [2] A. K. Das and T. P. Tripathi, Use of auxiliary information in estimating the coefficient of variation, Alig. J. of. Statist., 12 and 13, 51-58,1992-93.
  • [3] A. Rajyaguru and P. Gupta, On the estimation of the co-efficient of variation from finite population-I, Model Assisted Statistics and application, 36(2), 145-156,2002.
  • [4] A. Rajyaguru and P. Gupta, On the estimation of the co-efficient of variation from finite population-II, Model Assisted Statistics and application, 1(1), 57-66. 30,2006.
  • [5] C. Kadılar and H. Çıngı, Ratio estimators in simple random sampling, Applied mathematics and computation, 151(3), 893-902,2004.
  • [6] G. Özel, H. Çıngı and M. Oguz Separate ratio estimators for the population variance in stratified random sampling, Communication in Statistics: Theory and Methods, 43 (22), 4766-4779,2014.
  • [7] G. Ö Kadılar, A new exponential type estimator for the population mean in simple random sampling,Journal of Modern Applied Statistical Methods, 15(2), 207-214, 2016.
  • [8] I. Aslam, M. N. Amin, A. Mahmood and P. Sharma, New memory-based ratio estimator in survey sampling, Nat. & Appl.Sci. Int. Jour. (NASIJ), 5(1), 168181,2024.
  • [9] I. Aslam, M. Noor-ul-Amin, U. Yasmeen and M. Hanif, Memory type ratio and product estimators in stratified sampling, JRSS, 13(01), 1-20,2020.
  • [10] J. Shabbir and S. Gupta ,Estimation of population coefficient of variation in simple and stratified random sampling under two-phase sampling scheme when using two auxiliary variables Comm. Statist. Theory Methods, 46(16), 8113-8133,2017.
  • [11] M. Noor-ul-Amin, Memory type estimators of population mean using exponentially weighted moving averages for time scaled surveys, Comm. Statist. Theory Methods, 50(12), 2747-2758 ,2021.
  • [12] M. Noor-ul-Amin, Memory type ratio and product estimators for population mean for time-based surveys, J. Stat. Comput. Simul., 90(17), 3080-3092,2020.
  • [13] M. N. Qureshi, M. U. Tariq and M. Hanif, Memory-type ratio and product estimators for population variance using exponentially weighted moving averages for time-scaled surveys, Commun. Stat. Simul. Comput., 53(3), 1484-1493,2024.
  • [14] M. Sheret, Note on methodology: The coefficient of variation, Comparative Education Review, 28(3), 467-476,1984.
  • [15] M. Yaqub and J. Shabbir, An improved class of estimators for finite population variance, HJMS, 45(5), 1641-1660,2016.
  • [16] O. Ozturk, Estimation of population mean and total in a finite population setting using multiple auxiliary variables, Jour. of Agri., Bio., and Envir. Stat., 19, 161-184,2014.
  • [17] O. Ozturk, Estimation of a finite population mean and total using population ranks of sample units, Jour. of Agri., Bio., and Envir. Stat., 21, 181-202, 2016.
  • [18] P. D.Polly, Variability in mammalian dentitions: size-related bias in the coefficient of variation, Biological Journal of the Linnean Society, 64(1), 83-99,1998.
  • [19] P. A. Patel and S. Rina, A Monte Carlo comparison of some suggested estimators of Co-efficient of variation in finite population, Jour. of Stat. Sci., 1(2), 137-147,2009.
  • [20] P. F. Perri, Improved ratio-cum-product type estimators, SiT, 8(1), 51-69,2007.
  • [21] P. Sharma, P. Singh, M. Kumari and R. Singh, Estimation Procedures for Population Mean using EWMA for Time Scaled Survey, Sankhya B, 1-26,2024.
  • [22] P. Sharma and R. Singh, Generalized Class of Estimators for Population Median Using Auxiliary Information, HJMS, 44(2), 443-453,2015.
  • [23] R. P. Brief and J. Owen, A note on earnings risk and the coefficient of variation, The Jour. of Fin., 24(5), 901-904,1969.
  • [24] R. Singh, M. Mishra, B. P. Singh, P. Singh and N. K. Adichwal, Improved estimators for population coefficient of variation using auxiliary variable, JSMS, 21(7), 1335- 1355,2018.
  • [25] R. Singh, and M. Mishra, Estimating population coefficient of variation using a single auxiliary variable in simple random sampling, SiT-ns, 20(4), 89-111,2019.
  • [26] R. Singh, P. Singh and S. Rai , Estimators using EWMA Statistic for Estimation of Population Mean, Math. Stat. and Eng. Appl., 72(2), 31-41,2023.
  • [27] S. Bhushan, A. Kumar, A. I. Al-Omari and G. A. Alomani, Mean estimation for time-based surveys using memory-type logarithmic estimators. Mathematics, 11(9), 2125,2023.
  • [28] S. Kumar, P. Chhaparwal, K. Kumar and P. Kumar, Generalized memory-type estimators for time-based surveys: simulation experience and empirical results with birth weight dataset, Life Cycle Reliab Saf Eng , 13(1), 15-23,2024.
  • [29] S. Bhushan and A. Kumar, Novel log type class of estimators under ranked set sampling. Sankhya B, 84(1), 421-447,2022.
  • [30] S. K. Yadav, S. Misra and S. Gupta, Improved family of estimators of population coefficient of variation under simple random sampling, Communications in Statistics- Theory and Methods, 53(2), 727-747,2024.
  • [31] S. W. Roberts, Control Chart Tests Based on Geometric Moving Averages, Technimetrics, 1, 239-250, 1959.
  • [32] V. Archana, Ratio estimators for the Co-efficient of Variation in a Finite Population, Pak.j.stat.oper.res., 315-322,2011.
  • [33] X. Yan and X. Su, Linear regression analysis: theory and computing, World scientific publishing co. pte. Ltd.

Incorporating past data in enhancing coefficient of variation estimation: A practical approach

Year 2025, Volume: 54 Issue: 4, 1637 - 1656, 29.08.2025
https://doi.org/10.15672/hujms.1585762

Abstract

Measurement of variability is a crucial issue in survey sampling. This problem takes on a practical perspective when considering relative variability, as real-life scenarios often involve comparing two different characteristics or the same characteristic on different scales. For researchers and professionals working in a variety of fields, including agriculture, the stock market, economics, public health, finance, and more, its ability to improve decision-making processes makes it an essential tool. In this paper, we employ the exponentially weighted moving average statistic to propose memory-type estimators for the coefficient of variation that take advantage of auxiliary information in time-scaled surveys. These estimators are based on the concept of memory-type statistics, which integrate both past and present data to enhance the estimation of population parameters. Designed to dynamically incorporate historical data, they improve the accuracy and efficiency of estimation in longitudinal surveys. To validate their effectiveness, we establish the necessary mathematical conditions and explicitly derive expressions for bias and mean square error. Observations from a simulation study indicate that incorporating historical sample data alongside current data significantly enhances estimator performance. In addition, two real-life case studies are presented to demonstrate the efficacy and superiority of the proposed estimators.

References

  • [1] A. Chatterjee, G. N. Singh, A. Bandyopadhyay and P. Mukhopadhyay, A general procedure for estimating population variance in successive sampling using fuzzy tools, HJMS, 46(4), 695-712,2017.
  • [2] A. K. Das and T. P. Tripathi, Use of auxiliary information in estimating the coefficient of variation, Alig. J. of. Statist., 12 and 13, 51-58,1992-93.
  • [3] A. Rajyaguru and P. Gupta, On the estimation of the co-efficient of variation from finite population-I, Model Assisted Statistics and application, 36(2), 145-156,2002.
  • [4] A. Rajyaguru and P. Gupta, On the estimation of the co-efficient of variation from finite population-II, Model Assisted Statistics and application, 1(1), 57-66. 30,2006.
  • [5] C. Kadılar and H. Çıngı, Ratio estimators in simple random sampling, Applied mathematics and computation, 151(3), 893-902,2004.
  • [6] G. Özel, H. Çıngı and M. Oguz Separate ratio estimators for the population variance in stratified random sampling, Communication in Statistics: Theory and Methods, 43 (22), 4766-4779,2014.
  • [7] G. Ö Kadılar, A new exponential type estimator for the population mean in simple random sampling,Journal of Modern Applied Statistical Methods, 15(2), 207-214, 2016.
  • [8] I. Aslam, M. N. Amin, A. Mahmood and P. Sharma, New memory-based ratio estimator in survey sampling, Nat. & Appl.Sci. Int. Jour. (NASIJ), 5(1), 168181,2024.
  • [9] I. Aslam, M. Noor-ul-Amin, U. Yasmeen and M. Hanif, Memory type ratio and product estimators in stratified sampling, JRSS, 13(01), 1-20,2020.
  • [10] J. Shabbir and S. Gupta ,Estimation of population coefficient of variation in simple and stratified random sampling under two-phase sampling scheme when using two auxiliary variables Comm. Statist. Theory Methods, 46(16), 8113-8133,2017.
  • [11] M. Noor-ul-Amin, Memory type estimators of population mean using exponentially weighted moving averages for time scaled surveys, Comm. Statist. Theory Methods, 50(12), 2747-2758 ,2021.
  • [12] M. Noor-ul-Amin, Memory type ratio and product estimators for population mean for time-based surveys, J. Stat. Comput. Simul., 90(17), 3080-3092,2020.
  • [13] M. N. Qureshi, M. U. Tariq and M. Hanif, Memory-type ratio and product estimators for population variance using exponentially weighted moving averages for time-scaled surveys, Commun. Stat. Simul. Comput., 53(3), 1484-1493,2024.
  • [14] M. Sheret, Note on methodology: The coefficient of variation, Comparative Education Review, 28(3), 467-476,1984.
  • [15] M. Yaqub and J. Shabbir, An improved class of estimators for finite population variance, HJMS, 45(5), 1641-1660,2016.
  • [16] O. Ozturk, Estimation of population mean and total in a finite population setting using multiple auxiliary variables, Jour. of Agri., Bio., and Envir. Stat., 19, 161-184,2014.
  • [17] O. Ozturk, Estimation of a finite population mean and total using population ranks of sample units, Jour. of Agri., Bio., and Envir. Stat., 21, 181-202, 2016.
  • [18] P. D.Polly, Variability in mammalian dentitions: size-related bias in the coefficient of variation, Biological Journal of the Linnean Society, 64(1), 83-99,1998.
  • [19] P. A. Patel and S. Rina, A Monte Carlo comparison of some suggested estimators of Co-efficient of variation in finite population, Jour. of Stat. Sci., 1(2), 137-147,2009.
  • [20] P. F. Perri, Improved ratio-cum-product type estimators, SiT, 8(1), 51-69,2007.
  • [21] P. Sharma, P. Singh, M. Kumari and R. Singh, Estimation Procedures for Population Mean using EWMA for Time Scaled Survey, Sankhya B, 1-26,2024.
  • [22] P. Sharma and R. Singh, Generalized Class of Estimators for Population Median Using Auxiliary Information, HJMS, 44(2), 443-453,2015.
  • [23] R. P. Brief and J. Owen, A note on earnings risk and the coefficient of variation, The Jour. of Fin., 24(5), 901-904,1969.
  • [24] R. Singh, M. Mishra, B. P. Singh, P. Singh and N. K. Adichwal, Improved estimators for population coefficient of variation using auxiliary variable, JSMS, 21(7), 1335- 1355,2018.
  • [25] R. Singh, and M. Mishra, Estimating population coefficient of variation using a single auxiliary variable in simple random sampling, SiT-ns, 20(4), 89-111,2019.
  • [26] R. Singh, P. Singh and S. Rai , Estimators using EWMA Statistic for Estimation of Population Mean, Math. Stat. and Eng. Appl., 72(2), 31-41,2023.
  • [27] S. Bhushan, A. Kumar, A. I. Al-Omari and G. A. Alomani, Mean estimation for time-based surveys using memory-type logarithmic estimators. Mathematics, 11(9), 2125,2023.
  • [28] S. Kumar, P. Chhaparwal, K. Kumar and P. Kumar, Generalized memory-type estimators for time-based surveys: simulation experience and empirical results with birth weight dataset, Life Cycle Reliab Saf Eng , 13(1), 15-23,2024.
  • [29] S. Bhushan and A. Kumar, Novel log type class of estimators under ranked set sampling. Sankhya B, 84(1), 421-447,2022.
  • [30] S. K. Yadav, S. Misra and S. Gupta, Improved family of estimators of population coefficient of variation under simple random sampling, Communications in Statistics- Theory and Methods, 53(2), 727-747,2024.
  • [31] S. W. Roberts, Control Chart Tests Based on Geometric Moving Averages, Technimetrics, 1, 239-250, 1959.
  • [32] V. Archana, Ratio estimators for the Co-efficient of Variation in a Finite Population, Pak.j.stat.oper.res., 315-322,2011.
  • [33] X. Yan and X. Su, Linear regression analysis: theory and computing, World scientific publishing co. pte. Ltd.
There are 33 citations in total.

Details

Primary Language English
Subjects Theory of Sampling
Journal Section Statistics
Authors

Poonam Singh 0000-0002-7618-6142

Prayas Sharma 0000-0002-4828-1177

Early Pub Date July 19, 2025
Publication Date August 29, 2025
Submission Date November 15, 2024
Acceptance Date July 13, 2025
Published in Issue Year 2025 Volume: 54 Issue: 4

Cite

APA Singh, P., & Sharma, P. (2025). Incorporating past data in enhancing coefficient of variation estimation: A practical approach. Hacettepe Journal of Mathematics and Statistics, 54(4), 1637-1656. https://doi.org/10.15672/hujms.1585762
AMA Singh P, Sharma P. Incorporating past data in enhancing coefficient of variation estimation: A practical approach. Hacettepe Journal of Mathematics and Statistics. August 2025;54(4):1637-1656. doi:10.15672/hujms.1585762
Chicago Singh, Poonam, and Prayas Sharma. “Incorporating past Data in Enhancing Coefficient of Variation Estimation: A Practical Approach”. Hacettepe Journal of Mathematics and Statistics 54, no. 4 (August 2025): 1637-56. https://doi.org/10.15672/hujms.1585762.
EndNote Singh P, Sharma P (August 1, 2025) Incorporating past data in enhancing coefficient of variation estimation: A practical approach. Hacettepe Journal of Mathematics and Statistics 54 4 1637–1656.
IEEE P. Singh and P. Sharma, “Incorporating past data in enhancing coefficient of variation estimation: A practical approach”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, pp. 1637–1656, 2025, doi: 10.15672/hujms.1585762.
ISNAD Singh, Poonam - Sharma, Prayas. “Incorporating past Data in Enhancing Coefficient of Variation Estimation: A Practical Approach”. Hacettepe Journal of Mathematics and Statistics 54/4 (August2025), 1637-1656. https://doi.org/10.15672/hujms.1585762.
JAMA Singh P, Sharma P. Incorporating past data in enhancing coefficient of variation estimation: A practical approach. Hacettepe Journal of Mathematics and Statistics. 2025;54:1637–1656.
MLA Singh, Poonam and Prayas Sharma. “Incorporating past Data in Enhancing Coefficient of Variation Estimation: A Practical Approach”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 4, 2025, pp. 1637-56, doi:10.15672/hujms.1585762.
Vancouver Singh P, Sharma P. Incorporating past data in enhancing coefficient of variation estimation: A practical approach. Hacettepe Journal of Mathematics and Statistics. 2025;54(4):1637-56.