Year 2025,
Volume: 54 Issue: 5, 1708 - 1724, 29.10.2025
Khairul Habib Alam
,
Rohen Yumnam
,
Anita Tomar
References
-
[1] K. H. Alam and Y. Rohen, Non-self Ciric $\alpha^+(\theta, \psi)$−proximal contractions with best
proximity point, Palest. J. Math. 13 (2), 30–40, 2024.
-
[2] K. H. Alam, Y. Rohen, I. A. Kallel and J. Ahmad, Solution of an algebraic linear
system of equations using fixed point results in $C^*$−algebra valued extended Branciari
$S_b-$metric spaces, Int. J. Anal. Appl. 22, 139, 2024.
-
[3] K. H. Alam, Y. Rohen and N. Saleem, Fixed Points of $(\alpha, \beta, F^*)$ and $(\alpha, \beta, F^{**})$-Weak
Geraghty Contractions with an Application, Symmetry, 15 (1), 243, 2023.
-
[4] K. H. Alam, Y. Rohen and A. Tomar, On fixed point and its application to the spread
of infectious diseases model in $M^b_v-$metric space, Math. Methods Appl. Sci. 47 (7),
6489–6503, 2024.
-
[5] K. H. Alam, Y. Rohen, A. Tomar and M. Sajid, On geometry of fixed figures via
$\varphi-$interpolative contractions and application of activation functions in neural networks
and machine learning models, Ain Shams Engineering Journal, 16 (1), 103182,
2025.
-
[6] I. Altun, G. Mnak, Gulhan and H. Dag, Multivalued F−contractions on complete
metric spaces, J. Nonlinear Convex Anal. 16 (4), 659–666, 2015.
-
[7] Z. An, M. Li and L. Zhao, Fixed Points and Stability for Integral-Type Multivalued
Contractive Mappings, J. Funct. Spaces, 2021, 1–9, 2021.
-
[8] M. Asadi, E. Karapinar, and P. Salimi, New extension of p−metric spaces with some
fixed-point results on m−metric spaces, J. Inequal. Appl. 1 (18), 2014.
-
[9] M. Asim, I. Uddin, and M. Imdad, Fixed point results in $M_v-$metric spaces with an
application, J. Inequal. Appl. 1(280), 2019.
-
[10] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
-
[11] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Functional
Analysis, 30, 26–37, 1989.
-
[12] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux
équations intégrales, Fundamenta Mathematicae, 3, 133–181, 1922.
-
[13] R. M. T. Bianchini, Su un problema di S. Reich riguardante la teoría dei punti fissi,
Boll. Unione Mat. Ital. 5, 103–108, 1972.
-
[14] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized
metric spaces, Publ. Math. Debrecen, 57, 31–37, 2000.
-
[15] A. Branciari, A fixed point theorem for mappings satisfying a general contractive
condition of integral type, Int. J. Math. Math. Sci. 29, 536 pages, 2002.
-
[16] S. Chauhan, M. Imdad, E. Karapnar and B. Fisher, An integral type fixed point theorem
for multi-valued mappings employing strongly tangential property, J. Egyptian
Math. Soc. 22 (2), 258–264, 2014.
-
[17] B. Damjanovi and D. Dori, Multivalued generalizations of the Kannan fixed point
theorem, Filomat, 25 (1), 125–131, 2011.
-
[18] Y. Feing and S. Liu, Fixed point theorems for multi-valued contractive mappings and
multi-valued Caristi type mappings, J. Math. Anal. Appl. 317, 103–112, 2006.
-
[19] M. Frigon, Théorémes déxistence de solutions dínclusions différentielles, Topological
methods in differential equations and inclusions, Kluwer Academic Publishers, 51–87,
1995.
-
[20] M. Joshi, A. Tomar and T. Abdeljawad, On fixed points, their geometry and application
to satellite web coupling problem in $\mathcal{S}-$metric spaces, AIMS Math. 8 (2),
4407–4441, 2023.
-
[21] M. Joshi, A. Tomar, H. A. Nabwey, and R. George, On Unique and Nonunique Fixed
Points and Fixed Circles in $M_v^b-$Metric Space and Application to Cantilever Beam
Problem, J. Funct. Spaces, 1–15, 6681044, 2021.
-
[22] M. Joshi, A. Tomar and I. Uddin, Fixed point in $M^b_v-$metric space and applications,
Acta Univ. Sapientiae Math. 15 (2), 272–287, 2023.
-
[23] J. L. Kelley, General topology, D. Van Nostrand Co., Inc., Princeton, New Jersey,
1959.
-
[24] M. Kikkawa and T. Suzuki, Three fixed point theorems for generalized contractions
with constants in complete metric spaces, Nonlinear Anal. 69, 2942–2949, 2008.
-
[25] M. Kisielewicz, Differential Inclusions and Optimal Control, Polish Sc. Publishers
and Kluwer Academic Publishers, Dordrecht, 1991.
-
[26] Z. Liu, X. Li, S. M. Kang and S. Y. Cho, Fixed point theorems for mappings satisfying
contraction conditions of integral type and applications, J. Fixed Point Theory Appl.
64 (1), 2011.
-
[27] Z. D. Mitrovic and S. Radenovic, The Banach and Reich contractions in $b_v(s)-$metric
spaces, J. Fixed Point Theory Appl. 4 (19), 3087–3095, 2017.
-
[28] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on
complete metric spaces, J. Math. Anal. Appl. 141, 177–188, 1989.
-
[29] N. Mlaiki, N. Ta and N. Y. Özgür, On the Fixed-Circle Problem and Khan Type
Contractions, Axioms, 8, 80, 2018.
-
[30] S. B. Jr. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (2), 475–488,
1969.
-
[31] A. A. Tolstonogov, Differential Inclusions in Banach Spaces (in Russsian), Sc. Acad.
of Sciences, Siberian Branch, Novosibirsk, 1986.
-
[32] N.Y. Özgür, Fixed-disc results via simulation functions, Turkish J. Math. 43,
2794–2805, 2019.
-
[33] N. Y. Özgür, N. Mlaki, N. Ta, and N. Souayah, A new generalization of metric spaces:
rectangular M−metric spaces, Math. Sci. 12, 223–233, 2018.
-
[34] N. Y. Özgur and N. Tas, Some fixed circle theorems on metric spaces, Bull. Malays.
Math. Sci. Soc. 42, 1433–1449, 2019.
-
[35] V. M. Sehgal, On fixed and periodic points for a class of mappings, J. London Math.
Soc. 2 (5), 571-576, 1972.
-
[36] M. Stojakovi, L. Gaji, T. Doenovi and B. Cari, Fixed point of multivalued integral
type of contraction mappings, Fixed Point Theory Appl. 2015, 1–10, 2015.
-
[37] N. Tas, N. Y. Ozgur and N. Mlaiki, New types of $F_c-$contractions and the fixed-circle
problem, Mathematics, 6 (10), 188, 2019.
-
[38] N. Ta and N. Özgür, New multivalued contractions and the fixed-circle problem, Afr.
Mat. 36, 113, 2025.
-
[39] A. Tomar, M. Joshi, S. K. Padaliya, B. Joshi and A. Dwivedi, Fixed Point under
Set-Valued Relation-Theoretic Nonlinear Contractions and Application, Filomat, 33
(14), 4655–4664, 2019.
-
[40] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric
spaces, Fixed Point Theory Appl. 2012, 94, 2012.
Fixed point and its geometry and application for multivalued integral type contractions in $m_v^b$-metric spaces
Year 2025,
Volume: 54 Issue: 5, 1708 - 1724, 29.10.2025
Khairul Habib Alam
,
Rohen Yumnam
,
Anita Tomar
Abstract
This research explores fixed points for particularly integral type multivalued mappings, in $m^b_v-$metric spaces. Additionally, we study fixed circle problems offering geometric insights into sets of fixed points. This research paper contributes to the evolving field of multivalued mapping results in $m^b_v-$ spaces, drawing inspiration from the framework of Hausdorff. Further, motivated by the wide applications of differential inclusions as set-valued maps, we explore first-order nonlinear differential inclusions in $m_v^b-$metric spaces using established conclusions.
References
-
[1] K. H. Alam and Y. Rohen, Non-self Ciric $\alpha^+(\theta, \psi)$−proximal contractions with best
proximity point, Palest. J. Math. 13 (2), 30–40, 2024.
-
[2] K. H. Alam, Y. Rohen, I. A. Kallel and J. Ahmad, Solution of an algebraic linear
system of equations using fixed point results in $C^*$−algebra valued extended Branciari
$S_b-$metric spaces, Int. J. Anal. Appl. 22, 139, 2024.
-
[3] K. H. Alam, Y. Rohen and N. Saleem, Fixed Points of $(\alpha, \beta, F^*)$ and $(\alpha, \beta, F^{**})$-Weak
Geraghty Contractions with an Application, Symmetry, 15 (1), 243, 2023.
-
[4] K. H. Alam, Y. Rohen and A. Tomar, On fixed point and its application to the spread
of infectious diseases model in $M^b_v-$metric space, Math. Methods Appl. Sci. 47 (7),
6489–6503, 2024.
-
[5] K. H. Alam, Y. Rohen, A. Tomar and M. Sajid, On geometry of fixed figures via
$\varphi-$interpolative contractions and application of activation functions in neural networks
and machine learning models, Ain Shams Engineering Journal, 16 (1), 103182,
2025.
-
[6] I. Altun, G. Mnak, Gulhan and H. Dag, Multivalued F−contractions on complete
metric spaces, J. Nonlinear Convex Anal. 16 (4), 659–666, 2015.
-
[7] Z. An, M. Li and L. Zhao, Fixed Points and Stability for Integral-Type Multivalued
Contractive Mappings, J. Funct. Spaces, 2021, 1–9, 2021.
-
[8] M. Asadi, E. Karapinar, and P. Salimi, New extension of p−metric spaces with some
fixed-point results on m−metric spaces, J. Inequal. Appl. 1 (18), 2014.
-
[9] M. Asim, I. Uddin, and M. Imdad, Fixed point results in $M_v-$metric spaces with an
application, J. Inequal. Appl. 1(280), 2019.
-
[10] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
-
[11] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Functional
Analysis, 30, 26–37, 1989.
-
[12] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux
équations intégrales, Fundamenta Mathematicae, 3, 133–181, 1922.
-
[13] R. M. T. Bianchini, Su un problema di S. Reich riguardante la teoría dei punti fissi,
Boll. Unione Mat. Ital. 5, 103–108, 1972.
-
[14] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized
metric spaces, Publ. Math. Debrecen, 57, 31–37, 2000.
-
[15] A. Branciari, A fixed point theorem for mappings satisfying a general contractive
condition of integral type, Int. J. Math. Math. Sci. 29, 536 pages, 2002.
-
[16] S. Chauhan, M. Imdad, E. Karapnar and B. Fisher, An integral type fixed point theorem
for multi-valued mappings employing strongly tangential property, J. Egyptian
Math. Soc. 22 (2), 258–264, 2014.
-
[17] B. Damjanovi and D. Dori, Multivalued generalizations of the Kannan fixed point
theorem, Filomat, 25 (1), 125–131, 2011.
-
[18] Y. Feing and S. Liu, Fixed point theorems for multi-valued contractive mappings and
multi-valued Caristi type mappings, J. Math. Anal. Appl. 317, 103–112, 2006.
-
[19] M. Frigon, Théorémes déxistence de solutions dínclusions différentielles, Topological
methods in differential equations and inclusions, Kluwer Academic Publishers, 51–87,
1995.
-
[20] M. Joshi, A. Tomar and T. Abdeljawad, On fixed points, their geometry and application
to satellite web coupling problem in $\mathcal{S}-$metric spaces, AIMS Math. 8 (2),
4407–4441, 2023.
-
[21] M. Joshi, A. Tomar, H. A. Nabwey, and R. George, On Unique and Nonunique Fixed
Points and Fixed Circles in $M_v^b-$Metric Space and Application to Cantilever Beam
Problem, J. Funct. Spaces, 1–15, 6681044, 2021.
-
[22] M. Joshi, A. Tomar and I. Uddin, Fixed point in $M^b_v-$metric space and applications,
Acta Univ. Sapientiae Math. 15 (2), 272–287, 2023.
-
[23] J. L. Kelley, General topology, D. Van Nostrand Co., Inc., Princeton, New Jersey,
1959.
-
[24] M. Kikkawa and T. Suzuki, Three fixed point theorems for generalized contractions
with constants in complete metric spaces, Nonlinear Anal. 69, 2942–2949, 2008.
-
[25] M. Kisielewicz, Differential Inclusions and Optimal Control, Polish Sc. Publishers
and Kluwer Academic Publishers, Dordrecht, 1991.
-
[26] Z. Liu, X. Li, S. M. Kang and S. Y. Cho, Fixed point theorems for mappings satisfying
contraction conditions of integral type and applications, J. Fixed Point Theory Appl.
64 (1), 2011.
-
[27] Z. D. Mitrovic and S. Radenovic, The Banach and Reich contractions in $b_v(s)-$metric
spaces, J. Fixed Point Theory Appl. 4 (19), 3087–3095, 2017.
-
[28] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on
complete metric spaces, J. Math. Anal. Appl. 141, 177–188, 1989.
-
[29] N. Mlaiki, N. Ta and N. Y. Özgür, On the Fixed-Circle Problem and Khan Type
Contractions, Axioms, 8, 80, 2018.
-
[30] S. B. Jr. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (2), 475–488,
1969.
-
[31] A. A. Tolstonogov, Differential Inclusions in Banach Spaces (in Russsian), Sc. Acad.
of Sciences, Siberian Branch, Novosibirsk, 1986.
-
[32] N.Y. Özgür, Fixed-disc results via simulation functions, Turkish J. Math. 43,
2794–2805, 2019.
-
[33] N. Y. Özgür, N. Mlaki, N. Ta, and N. Souayah, A new generalization of metric spaces:
rectangular M−metric spaces, Math. Sci. 12, 223–233, 2018.
-
[34] N. Y. Özgur and N. Tas, Some fixed circle theorems on metric spaces, Bull. Malays.
Math. Sci. Soc. 42, 1433–1449, 2019.
-
[35] V. M. Sehgal, On fixed and periodic points for a class of mappings, J. London Math.
Soc. 2 (5), 571-576, 1972.
-
[36] M. Stojakovi, L. Gaji, T. Doenovi and B. Cari, Fixed point of multivalued integral
type of contraction mappings, Fixed Point Theory Appl. 2015, 1–10, 2015.
-
[37] N. Tas, N. Y. Ozgur and N. Mlaiki, New types of $F_c-$contractions and the fixed-circle
problem, Mathematics, 6 (10), 188, 2019.
-
[38] N. Ta and N. Özgür, New multivalued contractions and the fixed-circle problem, Afr.
Mat. 36, 113, 2025.
-
[39] A. Tomar, M. Joshi, S. K. Padaliya, B. Joshi and A. Dwivedi, Fixed Point under
Set-Valued Relation-Theoretic Nonlinear Contractions and Application, Filomat, 33
(14), 4655–4664, 2019.
-
[40] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric
spaces, Fixed Point Theory Appl. 2012, 94, 2012.