Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 5, 1708 - 1724, 29.10.2025
https://doi.org/10.15672/hujms.1471688

Abstract

References

  • [1] K. H. Alam and Y. Rohen, Non-self Ciric $\alpha^+(\theta, \psi)$−proximal contractions with best proximity point, Palest. J. Math. 13 (2), 30–40, 2024.
  • [2] K. H. Alam, Y. Rohen, I. A. Kallel and J. Ahmad, Solution of an algebraic linear system of equations using fixed point results in $C^*$−algebra valued extended Branciari $S_b-$metric spaces, Int. J. Anal. Appl. 22, 139, 2024.
  • [3] K. H. Alam, Y. Rohen and N. Saleem, Fixed Points of $(\alpha, \beta, F^*)$ and $(\alpha, \beta, F^{**})$-Weak Geraghty Contractions with an Application, Symmetry, 15 (1), 243, 2023.
  • [4] K. H. Alam, Y. Rohen and A. Tomar, On fixed point and its application to the spread of infectious diseases model in $M^b_v-$metric space, Math. Methods Appl. Sci. 47 (7), 6489–6503, 2024.
  • [5] K. H. Alam, Y. Rohen, A. Tomar and M. Sajid, On geometry of fixed figures via $\varphi-$interpolative contractions and application of activation functions in neural networks and machine learning models, Ain Shams Engineering Journal, 16 (1), 103182, 2025.
  • [6] I. Altun, G. Mnak, Gulhan and H. Dag, Multivalued F−contractions on complete metric spaces, J. Nonlinear Convex Anal. 16 (4), 659–666, 2015.
  • [7] Z. An, M. Li and L. Zhao, Fixed Points and Stability for Integral-Type Multivalued Contractive Mappings, J. Funct. Spaces, 2021, 1–9, 2021.
  • [8] M. Asadi, E. Karapinar, and P. Salimi, New extension of p−metric spaces with some fixed-point results on m−metric spaces, J. Inequal. Appl. 1 (18), 2014.
  • [9] M. Asim, I. Uddin, and M. Imdad, Fixed point results in $M_v-$metric spaces with an application, J. Inequal. Appl. 1(280), 2019.
  • [10] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
  • [11] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Functional Analysis, 30, 26–37, 1989.
  • [12] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, 3, 133–181, 1922.
  • [13] R. M. T. Bianchini, Su un problema di S. Reich riguardante la teoría dei punti fissi, Boll. Unione Mat. Ital. 5, 103–108, 1972.
  • [14] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57, 31–37, 2000.
  • [15] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29, 536 pages, 2002.
  • [16] S. Chauhan, M. Imdad, E. Karapnar and B. Fisher, An integral type fixed point theorem for multi-valued mappings employing strongly tangential property, J. Egyptian Math. Soc. 22 (2), 258–264, 2014.
  • [17] B. Damjanovi and D. Dori, Multivalued generalizations of the Kannan fixed point theorem, Filomat, 25 (1), 125–131, 2011.
  • [18] Y. Feing and S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl. 317, 103–112, 2006.
  • [19] M. Frigon, Théorémes déxistence de solutions dínclusions différentielles, Topological methods in differential equations and inclusions, Kluwer Academic Publishers, 51–87, 1995.
  • [20] M. Joshi, A. Tomar and T. Abdeljawad, On fixed points, their geometry and application to satellite web coupling problem in $\mathcal{S}-$metric spaces, AIMS Math. 8 (2), 4407–4441, 2023.
  • [21] M. Joshi, A. Tomar, H. A. Nabwey, and R. George, On Unique and Nonunique Fixed Points and Fixed Circles in $M_v^b-$Metric Space and Application to Cantilever Beam Problem, J. Funct. Spaces, 1–15, 6681044, 2021.
  • [22] M. Joshi, A. Tomar and I. Uddin, Fixed point in $M^b_v-$metric space and applications, Acta Univ. Sapientiae Math. 15 (2), 272–287, 2023.
  • [23] J. L. Kelley, General topology, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1959.
  • [24] M. Kikkawa and T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal. 69, 2942–2949, 2008.
  • [25] M. Kisielewicz, Differential Inclusions and Optimal Control, Polish Sc. Publishers and Kluwer Academic Publishers, Dordrecht, 1991.
  • [26] Z. Liu, X. Li, S. M. Kang and S. Y. Cho, Fixed point theorems for mappings satisfying contraction conditions of integral type and applications, J. Fixed Point Theory Appl. 64 (1), 2011.
  • [27] Z. D. Mitrovic and S. Radenovic, The Banach and Reich contractions in $b_v(s)-$metric spaces, J. Fixed Point Theory Appl. 4 (19), 3087–3095, 2017.
  • [28] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141, 177–188, 1989.
  • [29] N. Mlaiki, N. Ta and N. Y. Özgür, On the Fixed-Circle Problem and Khan Type Contractions, Axioms, 8, 80, 2018.
  • [30] S. B. Jr. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (2), 475–488, 1969.
  • [31] A. A. Tolstonogov, Differential Inclusions in Banach Spaces (in Russsian), Sc. Acad. of Sciences, Siberian Branch, Novosibirsk, 1986.
  • [32] N.Y. Özgür, Fixed-disc results via simulation functions, Turkish J. Math. 43, 2794–2805, 2019.
  • [33] N. Y. Özgür, N. Mlaki, N. Ta, and N. Souayah, A new generalization of metric spaces: rectangular M−metric spaces, Math. Sci. 12, 223–233, 2018.
  • [34] N. Y. Özgur and N. Tas, Some fixed circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc. 42, 1433–1449, 2019.
  • [35] V. M. Sehgal, On fixed and periodic points for a class of mappings, J. London Math. Soc. 2 (5), 571-576, 1972.
  • [36] M. Stojakovi, L. Gaji, T. Doenovi and B. Cari, Fixed point of multivalued integral type of contraction mappings, Fixed Point Theory Appl. 2015, 1–10, 2015.
  • [37] N. Tas, N. Y. Ozgur and N. Mlaiki, New types of $F_c-$contractions and the fixed-circle problem, Mathematics, 6 (10), 188, 2019.
  • [38] N. Ta and N. Özgür, New multivalued contractions and the fixed-circle problem, Afr. Mat. 36, 113, 2025.
  • [39] A. Tomar, M. Joshi, S. K. Padaliya, B. Joshi and A. Dwivedi, Fixed Point under Set-Valued Relation-Theoretic Nonlinear Contractions and Application, Filomat, 33 (14), 4655–4664, 2019.
  • [40] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012, 94, 2012.

Fixed point and its geometry and application for multivalued integral type contractions in $m_v^b$-metric spaces

Year 2025, Volume: 54 Issue: 5, 1708 - 1724, 29.10.2025
https://doi.org/10.15672/hujms.1471688

Abstract

This research explores fixed points for particularly integral type multivalued mappings, in $m^b_v-$metric spaces. Additionally, we study fixed circle problems offering geometric insights into sets of fixed points. This research paper contributes to the evolving field of multivalued mapping results in $m^b_v-$ spaces, drawing inspiration from the framework of Hausdorff. Further, motivated by the wide applications of differential inclusions as set-valued maps, we explore first-order nonlinear differential inclusions in $m_v^b-$metric spaces using established conclusions.

References

  • [1] K. H. Alam and Y. Rohen, Non-self Ciric $\alpha^+(\theta, \psi)$−proximal contractions with best proximity point, Palest. J. Math. 13 (2), 30–40, 2024.
  • [2] K. H. Alam, Y. Rohen, I. A. Kallel and J. Ahmad, Solution of an algebraic linear system of equations using fixed point results in $C^*$−algebra valued extended Branciari $S_b-$metric spaces, Int. J. Anal. Appl. 22, 139, 2024.
  • [3] K. H. Alam, Y. Rohen and N. Saleem, Fixed Points of $(\alpha, \beta, F^*)$ and $(\alpha, \beta, F^{**})$-Weak Geraghty Contractions with an Application, Symmetry, 15 (1), 243, 2023.
  • [4] K. H. Alam, Y. Rohen and A. Tomar, On fixed point and its application to the spread of infectious diseases model in $M^b_v-$metric space, Math. Methods Appl. Sci. 47 (7), 6489–6503, 2024.
  • [5] K. H. Alam, Y. Rohen, A. Tomar and M. Sajid, On geometry of fixed figures via $\varphi-$interpolative contractions and application of activation functions in neural networks and machine learning models, Ain Shams Engineering Journal, 16 (1), 103182, 2025.
  • [6] I. Altun, G. Mnak, Gulhan and H. Dag, Multivalued F−contractions on complete metric spaces, J. Nonlinear Convex Anal. 16 (4), 659–666, 2015.
  • [7] Z. An, M. Li and L. Zhao, Fixed Points and Stability for Integral-Type Multivalued Contractive Mappings, J. Funct. Spaces, 2021, 1–9, 2021.
  • [8] M. Asadi, E. Karapinar, and P. Salimi, New extension of p−metric spaces with some fixed-point results on m−metric spaces, J. Inequal. Appl. 1 (18), 2014.
  • [9] M. Asim, I. Uddin, and M. Imdad, Fixed point results in $M_v-$metric spaces with an application, J. Inequal. Appl. 1(280), 2019.
  • [10] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
  • [11] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Functional Analysis, 30, 26–37, 1989.
  • [12] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, 3, 133–181, 1922.
  • [13] R. M. T. Bianchini, Su un problema di S. Reich riguardante la teoría dei punti fissi, Boll. Unione Mat. Ital. 5, 103–108, 1972.
  • [14] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57, 31–37, 2000.
  • [15] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29, 536 pages, 2002.
  • [16] S. Chauhan, M. Imdad, E. Karapnar and B. Fisher, An integral type fixed point theorem for multi-valued mappings employing strongly tangential property, J. Egyptian Math. Soc. 22 (2), 258–264, 2014.
  • [17] B. Damjanovi and D. Dori, Multivalued generalizations of the Kannan fixed point theorem, Filomat, 25 (1), 125–131, 2011.
  • [18] Y. Feing and S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl. 317, 103–112, 2006.
  • [19] M. Frigon, Théorémes déxistence de solutions dínclusions différentielles, Topological methods in differential equations and inclusions, Kluwer Academic Publishers, 51–87, 1995.
  • [20] M. Joshi, A. Tomar and T. Abdeljawad, On fixed points, their geometry and application to satellite web coupling problem in $\mathcal{S}-$metric spaces, AIMS Math. 8 (2), 4407–4441, 2023.
  • [21] M. Joshi, A. Tomar, H. A. Nabwey, and R. George, On Unique and Nonunique Fixed Points and Fixed Circles in $M_v^b-$Metric Space and Application to Cantilever Beam Problem, J. Funct. Spaces, 1–15, 6681044, 2021.
  • [22] M. Joshi, A. Tomar and I. Uddin, Fixed point in $M^b_v-$metric space and applications, Acta Univ. Sapientiae Math. 15 (2), 272–287, 2023.
  • [23] J. L. Kelley, General topology, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1959.
  • [24] M. Kikkawa and T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal. 69, 2942–2949, 2008.
  • [25] M. Kisielewicz, Differential Inclusions and Optimal Control, Polish Sc. Publishers and Kluwer Academic Publishers, Dordrecht, 1991.
  • [26] Z. Liu, X. Li, S. M. Kang and S. Y. Cho, Fixed point theorems for mappings satisfying contraction conditions of integral type and applications, J. Fixed Point Theory Appl. 64 (1), 2011.
  • [27] Z. D. Mitrovic and S. Radenovic, The Banach and Reich contractions in $b_v(s)-$metric spaces, J. Fixed Point Theory Appl. 4 (19), 3087–3095, 2017.
  • [28] N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued mappings on complete metric spaces, J. Math. Anal. Appl. 141, 177–188, 1989.
  • [29] N. Mlaiki, N. Ta and N. Y. Özgür, On the Fixed-Circle Problem and Khan Type Contractions, Axioms, 8, 80, 2018.
  • [30] S. B. Jr. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (2), 475–488, 1969.
  • [31] A. A. Tolstonogov, Differential Inclusions in Banach Spaces (in Russsian), Sc. Acad. of Sciences, Siberian Branch, Novosibirsk, 1986.
  • [32] N.Y. Özgür, Fixed-disc results via simulation functions, Turkish J. Math. 43, 2794–2805, 2019.
  • [33] N. Y. Özgür, N. Mlaki, N. Ta, and N. Souayah, A new generalization of metric spaces: rectangular M−metric spaces, Math. Sci. 12, 223–233, 2018.
  • [34] N. Y. Özgur and N. Tas, Some fixed circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc. 42, 1433–1449, 2019.
  • [35] V. M. Sehgal, On fixed and periodic points for a class of mappings, J. London Math. Soc. 2 (5), 571-576, 1972.
  • [36] M. Stojakovi, L. Gaji, T. Doenovi and B. Cari, Fixed point of multivalued integral type of contraction mappings, Fixed Point Theory Appl. 2015, 1–10, 2015.
  • [37] N. Tas, N. Y. Ozgur and N. Mlaiki, New types of $F_c-$contractions and the fixed-circle problem, Mathematics, 6 (10), 188, 2019.
  • [38] N. Ta and N. Özgür, New multivalued contractions and the fixed-circle problem, Afr. Mat. 36, 113, 2025.
  • [39] A. Tomar, M. Joshi, S. K. Padaliya, B. Joshi and A. Dwivedi, Fixed Point under Set-Valued Relation-Theoretic Nonlinear Contractions and Application, Filomat, 33 (14), 4655–4664, 2019.
  • [40] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012, 94, 2012.
There are 40 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis, Topology, Pure Mathematics (Other)
Journal Section Mathematics
Authors

Khairul Habib Alam 0000-0001-9565-4223

Rohen Yumnam 0000-0002-1859-4332

Anita Tomar 0000-0001-8033-856X

Early Pub Date October 6, 2025
Publication Date October 29, 2025
Submission Date April 21, 2024
Acceptance Date December 12, 2024
Published in Issue Year 2025 Volume: 54 Issue: 5

Cite

APA Alam, K. H., Yumnam, R., & Tomar, A. (2025). Fixed point and its geometry and application for multivalued integral type contractions in $m_v^b$-metric spaces. Hacettepe Journal of Mathematics and Statistics, 54(5), 1708-1724. https://doi.org/10.15672/hujms.1471688
AMA Alam KH, Yumnam R, Tomar A. Fixed point and its geometry and application for multivalued integral type contractions in $m_v^b$-metric spaces. Hacettepe Journal of Mathematics and Statistics. October 2025;54(5):1708-1724. doi:10.15672/hujms.1471688
Chicago Alam, Khairul Habib, Rohen Yumnam, and Anita Tomar. “Fixed Point and Its Geometry and Application for Multivalued Integral Type Contractions in $m_v^b$-Metric Spaces”. Hacettepe Journal of Mathematics and Statistics 54, no. 5 (October 2025): 1708-24. https://doi.org/10.15672/hujms.1471688.
EndNote Alam KH, Yumnam R, Tomar A (October 1, 2025) Fixed point and its geometry and application for multivalued integral type contractions in $m_v^b$-metric spaces. Hacettepe Journal of Mathematics and Statistics 54 5 1708–1724.
IEEE K. H. Alam, R. Yumnam, and A. Tomar, “Fixed point and its geometry and application for multivalued integral type contractions in $m_v^b$-metric spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, pp. 1708–1724, 2025, doi: 10.15672/hujms.1471688.
ISNAD Alam, Khairul Habib et al. “Fixed Point and Its Geometry and Application for Multivalued Integral Type Contractions in $m_v^b$-Metric Spaces”. Hacettepe Journal of Mathematics and Statistics 54/5 (October2025), 1708-1724. https://doi.org/10.15672/hujms.1471688.
JAMA Alam KH, Yumnam R, Tomar A. Fixed point and its geometry and application for multivalued integral type contractions in $m_v^b$-metric spaces. Hacettepe Journal of Mathematics and Statistics. 2025;54:1708–1724.
MLA Alam, Khairul Habib et al. “Fixed Point and Its Geometry and Application for Multivalued Integral Type Contractions in $m_v^b$-Metric Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, 2025, pp. 1708-24, doi:10.15672/hujms.1471688.
Vancouver Alam KH, Yumnam R, Tomar A. Fixed point and its geometry and application for multivalued integral type contractions in $m_v^b$-metric spaces. Hacettepe Journal of Mathematics and Statistics. 2025;54(5):1708-24.