Research Article
BibTex RIS Cite

New developments in fractional Hermite-Hadamard type inequalities through $(\alpha,m)$-convex functions

Year 2025, Volume: 54 Issue: 5, 1806 - 1825, 29.10.2025
https://doi.org/10.15672/hujms.1554049

Abstract

This work aims to establish new fractional integral inequalities of the Hermite-Hadamard type. These results are explored by combining the Riemann-Liouville fractional integrals in a new identity and then applying extended class of convex functions. The limiting cases of the novel results are presented in terms of remarks that connect our findings to the body of existing literature. Furthermore, we present inequalities in the form of some special means as applications of the main results.

References

  • [1] T. Abdeljawad, P. O. Mohammed and A. Kashuri, New Modified Conformable Fractional Integral Inequalities of Hermite-Hadamard Type with Applications, J. Funct. Spaces, Article 4352357, 2020.
  • [2] A. A. Almoneef, M. A. Barakat, and A. A. Hyder, Further Fractional Hadamard Integral Inequalities Utilizing Extended Convex Functions, Fractal and Fractional, 8, 230, 2024.
  • [3] G. A. Anastassiou, Generalised fractional Hermite-Hadamard inequalities involving m-convexity and (s,m)-convexity, Facta Universitatis, Series: Mathematics and Informatics. 28, 107-126, 2013.
  • [4] F. X. Chen, Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals,Comput. Appl. Math. 268, 121-128, 2015.
  • [5] Z. Dahmani, L. Tabharit and S. Taf, New generalisations of gruss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl. 2 (3), 93-99, 2010.
  • [6] S. S. Dragomir, M. I. Bhatti, M. Iqbal and M. Muddassar, Some new Hermite- Hadamards type fractional integral inequalities, J. Comput. Anal. Appl. 18 (4), 655- 661, 2015.
  • [7] S. S. Dragomir, M. I. Bhatti and M. Muddassar, Some new Hermite-Hadamard’s type fractional integral inequalities, J. Comput. Anal. Appl. 18 (2), 1572-9206, 2015.
  • [8] J. Hadamard,Étude sur les propriétés des fonctions entières en particulier dune fonction considérée par Riemann, J. Math. Pures Appl. 58, 171215, 1893.
  • [9] J. Han, P. O. Mohammed and H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math. 18, 794-806, 2020.
  • [10] S.R. Hwang, K. L. Tseng and K. C. Hsu, New inequalities for fractional integrals and their applications, Turkish J. Math. 40, 471486, 2016.
  • [11] M. Iqbal, M. I. Bhatti and K. Nazeer, Generalization of inequalities analogous to Hermite-Hadamard inequality via fractional integrals, Bull. Korean Math. Soc. 52 (3), 707-716, 2015.
  • [12] . can, New general integral inequalities for quasi-geometrically convex functions via fractional integrals, J. Inequal. Appl. Appl. 491, 2013.
  • [13] K. A. Khan, S. Fatima, A. Nosheen and R. Matendo Mabela, New Developments of Hermite-Hadamard Type Inequalities via s-Convexity and Fractional Integrals, J. Math. Article 1997549, 2024.
  • [14] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006.
  • [15] Y. M. Liao, J. H. Deng and J. R. Wang, Riemann-Liouville fractional Hermite- Hadamard inequalities. Part II: for twice differentiable geometric-arithmetically sconvex functions, J. Inequal. Appl. 517, 2013.
  • [16] V. G. Mihesan, A generalization of the convexity, Seminar on functional equations, approximation and convexity, Cluj-Napoca,(Romania), 1993.
  • [17] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley Sons Interscience, New York, 1993.
  • [18] D. S. Mitrinović, J. E. Peˆcarić and A. M. Fink,Classical and New Inequalities in Analysis. Klumer Akadimic Publishers, Dordrecht, Boston, Lonon, 1993.
  • [19] P. O. Mohammed, and T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Difference Equ. 69, 2020.
  • [20] P. O. Mohammed and I. Brevik, A New Version of the HermiteHadamard Inequality for Riemann-Liouville Fractional Integrals, Symmetry, 12, 610, 2020.
  • [21] P. O. Mohammed and M. Z. Sarikaya, Hermite-Hadamard type inequalities for Fconvex function involving fractional integrals, J. Inequal. Appl. 2018, 359, 2018.
  • [22] P. O. Mohammed, and M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math. 372, Article 112740, 2020.
  • [23] J. E. Nápoles Valdés, F. Rabossi and A. D. Samaniego, Convex fuctions: Ariadnés Thread or Charlottés Spiderweb? , Adv. Math. Mod. Appl. 5 (2), 176-191, 2020.
  • [24] M. E. Özdemir, M. Avci and H. Kavurmaci, Hermite Hadamard-type inequalities via $(\alpha,m)-$ convexity, Comput. Math. Appl. 6, 2614-2620, 2011.
  • [25] M. E. Özdemir, S. I. Butt, B. Bayraktar and J. Nasir, Several integral inequalities for $(\alpha,s,m)$-convex functions, AIMS Mathematics, 5 (4), 3906-3921, 2020.
  • [26] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego. 108, 1999.
  • [27] F. Qi, P. O. Mohammed, J. C. Yao, and Y. H. Yao, Generalized fractional integral inequalities of HermiteHadamard type for (alpha,m)-convex functions, J. Inequal. Appl. 135, 2019.
  • [28] E. D. Rainville, Special functions. Macmillan Publishers, New York, 1960.
  • [29] M. Z. Sarikaya, E. Set, H. Yaldiz and N. Baak, Hermite-Hadamards inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, 57, 24032407, 2013.
  • [30] G. Toader, Some generalizations of the convexity, University of Cluj-Napoca, 329-338, 1985.
  • [31] J. Wang, J. Deng and M. Feckan, Hermite-Hadamard-type inequalities for r-convex functions based on the use of Riemann-Liouville frantional integrals, Ukrainian Math. J. 65, 193-211, 2013.
  • [32] J. R. Wang, X. Z. Li, M. Feckan and Y. Zhou, Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Appl. Anal. 92 (11), 2241-2253, 2013.
  • [33] S. H. Wang and F. Qi, Hermite-Hadamard type inequalities for s-convex functions via Riemann-Liouville fractional integrals, J. Comput. Anal. Appl. 22 (6), 1124-1134, 2017.

Year 2025, Volume: 54 Issue: 5, 1806 - 1825, 29.10.2025
https://doi.org/10.15672/hujms.1554049

Abstract

References

  • [1] T. Abdeljawad, P. O. Mohammed and A. Kashuri, New Modified Conformable Fractional Integral Inequalities of Hermite-Hadamard Type with Applications, J. Funct. Spaces, Article 4352357, 2020.
  • [2] A. A. Almoneef, M. A. Barakat, and A. A. Hyder, Further Fractional Hadamard Integral Inequalities Utilizing Extended Convex Functions, Fractal and Fractional, 8, 230, 2024.
  • [3] G. A. Anastassiou, Generalised fractional Hermite-Hadamard inequalities involving m-convexity and (s,m)-convexity, Facta Universitatis, Series: Mathematics and Informatics. 28, 107-126, 2013.
  • [4] F. X. Chen, Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals,Comput. Appl. Math. 268, 121-128, 2015.
  • [5] Z. Dahmani, L. Tabharit and S. Taf, New generalisations of gruss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl. 2 (3), 93-99, 2010.
  • [6] S. S. Dragomir, M. I. Bhatti, M. Iqbal and M. Muddassar, Some new Hermite- Hadamards type fractional integral inequalities, J. Comput. Anal. Appl. 18 (4), 655- 661, 2015.
  • [7] S. S. Dragomir, M. I. Bhatti and M. Muddassar, Some new Hermite-Hadamard’s type fractional integral inequalities, J. Comput. Anal. Appl. 18 (2), 1572-9206, 2015.
  • [8] J. Hadamard,Étude sur les propriétés des fonctions entières en particulier dune fonction considérée par Riemann, J. Math. Pures Appl. 58, 171215, 1893.
  • [9] J. Han, P. O. Mohammed and H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math. 18, 794-806, 2020.
  • [10] S.R. Hwang, K. L. Tseng and K. C. Hsu, New inequalities for fractional integrals and their applications, Turkish J. Math. 40, 471486, 2016.
  • [11] M. Iqbal, M. I. Bhatti and K. Nazeer, Generalization of inequalities analogous to Hermite-Hadamard inequality via fractional integrals, Bull. Korean Math. Soc. 52 (3), 707-716, 2015.
  • [12] . can, New general integral inequalities for quasi-geometrically convex functions via fractional integrals, J. Inequal. Appl. Appl. 491, 2013.
  • [13] K. A. Khan, S. Fatima, A. Nosheen and R. Matendo Mabela, New Developments of Hermite-Hadamard Type Inequalities via s-Convexity and Fractional Integrals, J. Math. Article 1997549, 2024.
  • [14] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006.
  • [15] Y. M. Liao, J. H. Deng and J. R. Wang, Riemann-Liouville fractional Hermite- Hadamard inequalities. Part II: for twice differentiable geometric-arithmetically sconvex functions, J. Inequal. Appl. 517, 2013.
  • [16] V. G. Mihesan, A generalization of the convexity, Seminar on functional equations, approximation and convexity, Cluj-Napoca,(Romania), 1993.
  • [17] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley Sons Interscience, New York, 1993.
  • [18] D. S. Mitrinović, J. E. Peˆcarić and A. M. Fink,Classical and New Inequalities in Analysis. Klumer Akadimic Publishers, Dordrecht, Boston, Lonon, 1993.
  • [19] P. O. Mohammed, and T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Difference Equ. 69, 2020.
  • [20] P. O. Mohammed and I. Brevik, A New Version of the HermiteHadamard Inequality for Riemann-Liouville Fractional Integrals, Symmetry, 12, 610, 2020.
  • [21] P. O. Mohammed and M. Z. Sarikaya, Hermite-Hadamard type inequalities for Fconvex function involving fractional integrals, J. Inequal. Appl. 2018, 359, 2018.
  • [22] P. O. Mohammed, and M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math. 372, Article 112740, 2020.
  • [23] J. E. Nápoles Valdés, F. Rabossi and A. D. Samaniego, Convex fuctions: Ariadnés Thread or Charlottés Spiderweb? , Adv. Math. Mod. Appl. 5 (2), 176-191, 2020.
  • [24] M. E. Özdemir, M. Avci and H. Kavurmaci, Hermite Hadamard-type inequalities via $(\alpha,m)-$ convexity, Comput. Math. Appl. 6, 2614-2620, 2011.
  • [25] M. E. Özdemir, S. I. Butt, B. Bayraktar and J. Nasir, Several integral inequalities for $(\alpha,s,m)$-convex functions, AIMS Mathematics, 5 (4), 3906-3921, 2020.
  • [26] I. Podlubny, Fractional Differential Equations. Academic Press, San Diego. 108, 1999.
  • [27] F. Qi, P. O. Mohammed, J. C. Yao, and Y. H. Yao, Generalized fractional integral inequalities of HermiteHadamard type for (alpha,m)-convex functions, J. Inequal. Appl. 135, 2019.
  • [28] E. D. Rainville, Special functions. Macmillan Publishers, New York, 1960.
  • [29] M. Z. Sarikaya, E. Set, H. Yaldiz and N. Baak, Hermite-Hadamards inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, 57, 24032407, 2013.
  • [30] G. Toader, Some generalizations of the convexity, University of Cluj-Napoca, 329-338, 1985.
  • [31] J. Wang, J. Deng and M. Feckan, Hermite-Hadamard-type inequalities for r-convex functions based on the use of Riemann-Liouville frantional integrals, Ukrainian Math. J. 65, 193-211, 2013.
  • [32] J. R. Wang, X. Z. Li, M. Feckan and Y. Zhou, Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Appl. Anal. 92 (11), 2241-2253, 2013.
  • [33] S. H. Wang and F. Qi, Hermite-Hadamard type inequalities for s-convex functions via Riemann-Liouville fractional integrals, J. Comput. Anal. Appl. 22 (6), 1124-1134, 2017.
There are 33 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Mathematics
Authors

Muzammil Mukhtar 0009-0005-4858-1195

Ayesha Firdous 0009-0003-9551-3254

Muhammad Samraiz 0000-0001-8480-2817

Early Pub Date April 11, 2025
Publication Date October 29, 2025
Submission Date September 21, 2024
Acceptance Date February 11, 2025
Published in Issue Year 2025 Volume: 54 Issue: 5

Cite

APA Mukhtar, M., Firdous, A., & Samraiz, M. (2025). New developments in fractional Hermite-Hadamard type inequalities through $(\alpha,m)$-convex functions. Hacettepe Journal of Mathematics and Statistics, 54(5), 1806-1825. https://doi.org/10.15672/hujms.1554049
AMA Mukhtar M, Firdous A, Samraiz M. New developments in fractional Hermite-Hadamard type inequalities through $(\alpha,m)$-convex functions. Hacettepe Journal of Mathematics and Statistics. October 2025;54(5):1806-1825. doi:10.15672/hujms.1554049
Chicago Mukhtar, Muzammil, Ayesha Firdous, and Muhammad Samraiz. “New Developments in Fractional Hermite-Hadamard Type Inequalities through $(\alpha,m)$-Convex Functions”. Hacettepe Journal of Mathematics and Statistics 54, no. 5 (October 2025): 1806-25. https://doi.org/10.15672/hujms.1554049.
EndNote Mukhtar M, Firdous A, Samraiz M (October 1, 2025) New developments in fractional Hermite-Hadamard type inequalities through $(\alpha,m)$-convex functions. Hacettepe Journal of Mathematics and Statistics 54 5 1806–1825.
IEEE M. Mukhtar, A. Firdous, and M. Samraiz, “New developments in fractional Hermite-Hadamard type inequalities through $(\alpha,m)$-convex functions”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, pp. 1806–1825, 2025, doi: 10.15672/hujms.1554049.
ISNAD Mukhtar, Muzammil et al. “New Developments in Fractional Hermite-Hadamard Type Inequalities through $(\alpha,m)$-Convex Functions”. Hacettepe Journal of Mathematics and Statistics 54/5 (October2025), 1806-1825. https://doi.org/10.15672/hujms.1554049.
JAMA Mukhtar M, Firdous A, Samraiz M. New developments in fractional Hermite-Hadamard type inequalities through $(\alpha,m)$-convex functions. Hacettepe Journal of Mathematics and Statistics. 2025;54:1806–1825.
MLA Mukhtar, Muzammil et al. “New Developments in Fractional Hermite-Hadamard Type Inequalities through $(\alpha,m)$-Convex Functions”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, 2025, pp. 1806-25, doi:10.15672/hujms.1554049.
Vancouver Mukhtar M, Firdous A, Samraiz M. New developments in fractional Hermite-Hadamard type inequalities through $(\alpha,m)$-convex functions. Hacettepe Journal of Mathematics and Statistics. 2025;54(5):1806-25.