Year 2025,
Volume: 54 Issue: 5, 1725 - 1729, 29.10.2025
Qianqian Wang
,
Shijie Tao
Project Number
Nos. 12471017, 12071181 Nos. NY 222090, NY 222091
References
-
[1] J. Bray, D. Holt and C. M. Roney-Dougal, The Maximal Subgroups of the Low-
Dimensional Finite Classical Groups, London Math. Soc. Lecture Note Ser., 407,
Cambridge University Press, Cambridge, 2013.
-
[2] Z. M. Chen, Inner-p-closed group, Mathematical progress, 04, 385-388, 1986.
-
[3] J. H. Conway, R. T. Curtis, S. P. Norton et al., Atlas of Finite Groups, London-New
York, Oxford Univ Press, 1985.
-
[4] B. Huppert, Endliche Gruppen I, Berlin, Springer-Verlag, 1967.
-
[5] J. T. Shi and Y. F. Tian, On finite groups in which every maximal subgroup of order
divisible by p is nilpotent (or abelian), Rend. Sem. Mat. Univ. Padova, published
online first, 2024.
-
[6] P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups,
vol. 129. London Math. Soc. Lecture Note Ser., Cambridge University Press, Cambridge,
1990.
-
[7] R. A. Wilson, The Finite Simple Groups, London, Springer-Verlag, 2009.
On finite groups in which every maximal subgroup of order divisible by $p$ is $p$-decomposable
Year 2025,
Volume: 54 Issue: 5, 1725 - 1729, 29.10.2025
Qianqian Wang
,
Shijie Tao
Abstract
We obtain a complete classification of a finite group $G$ in which every maximal subgroup of order divisible by $p$ is $p$-decomposable for a given prime divisor $p$ of |$G$| and our results generalize a recent result of Shi and Tian.
Ethical Statement
This study adheres to the principles of academic integrity, with all research steps and results accurately presented to ensure the rigor of the mathematical models and derivations. The theoretical frameworks and references used in this study are clearly cited to respect intellectual property rights, and all data, models, and theoretical methods utilized comply with citation standards.
Supporting Institution
National Natural Science Foundation of China,e Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications
Project Number
Nos. 12471017, 12071181 Nos. NY 222090, NY 222091
Thanks
The authors are supported by the National Natural Science Foundation of China (Nos. 12471017,12071181) and the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant Nos. NY 222090, NY 222091)
References
-
[1] J. Bray, D. Holt and C. M. Roney-Dougal, The Maximal Subgroups of the Low-
Dimensional Finite Classical Groups, London Math. Soc. Lecture Note Ser., 407,
Cambridge University Press, Cambridge, 2013.
-
[2] Z. M. Chen, Inner-p-closed group, Mathematical progress, 04, 385-388, 1986.
-
[3] J. H. Conway, R. T. Curtis, S. P. Norton et al., Atlas of Finite Groups, London-New
York, Oxford Univ Press, 1985.
-
[4] B. Huppert, Endliche Gruppen I, Berlin, Springer-Verlag, 1967.
-
[5] J. T. Shi and Y. F. Tian, On finite groups in which every maximal subgroup of order
divisible by p is nilpotent (or abelian), Rend. Sem. Mat. Univ. Padova, published
online first, 2024.
-
[6] P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups,
vol. 129. London Math. Soc. Lecture Note Ser., Cambridge University Press, Cambridge,
1990.
-
[7] R. A. Wilson, The Finite Simple Groups, London, Springer-Verlag, 2009.