Research Article
BibTex RIS Cite

On the numerical radii of certain operator forms

Year 2025, Volume: 54 Issue: 5, 1826 - 1838, 29.10.2025
https://doi.org/10.15672/hujms.1579443

Abstract

The main goal of this paper is to present new bounds for the norms and numerical radii of certain Hilbert space operators, which involve the sums of operators' products. The obtained result will be utilized to obtain some equivalent conditions regarding certain operator identities, to find upper bounds for the sum of two operators, to obtain certain refinements of celebrated numerical radius bounds, and to present a new reverse for the triangle inequality when positive operators are treated.

References

  • [1] A. Abu-Omar, F. Kittaneh, Numerical radius inequalities for $n\times n$ operator matrices, Linear Algebra Appl. 468, 18–26, 2015.
  • [2] A. Abu-Omar, F. Kittaneh, Upper and lower bounds for the numerical radius with an application to involution operators, Rocky Mountain J. Math. 45(4), 1055–1065, 2015.
  • [3] D. Afraz, R. Lashkaripour, and M. Bakherad, Further norm and numerical radius inequalities for sum of Hilbert space operators, Filomat 38(9), 3235–3242, 2024.
  • [4] E. Alizadeh and A. Farokhina, some refinements of numerical radius inequalities for Hilbert space operators, Jordan J. Math. Stat. 15(1), 55-63, 2022.
  • [5] B. Al-Naddaf, A. Burqan, and F. Kittaneh, Generalized numerical radius inequalities involving positive semidefinite block matrices, J. Math. Inequal. 17(4), 1363–1370, 2023.
  • [6] M. W. Alomari, M. Sababheh, C. Conde, and H. R. Moradi, Generalized Euclidean Operator Radius, Georgian Math. J. 31(3), 369–380, 2024.
  • [7] M. Alomari, S. Sahoo and M. Bakherad, Further numerical radius inequalities, J. Math. Inequal. 16(1), 307–326, 2022.
  • [8] M. Bakherad and F. Kittaneh, Numerical radius inequalities involving commutators of $G_1$ operators, Complex Anal. Oper. Theory 13(4), 1557–1567, 2019.
  • [9] M. Bakherad and K. Shebrawi, Upper bounds for numerical radius inequalities involving off-diagonal operator matrices, Ann. Funct. Anal. 9(3), 297–309, 2018.
  • [10] A. Benmakhlouf, O. Hirzallah, and F. Kittaneh, On the p-numerical radii of Hilbert space operators, Linear Multilinear Algebra 69(15), 2813–2829, 2021.
  • [11] R. Bhatia, F. Kittaneh, On the singular values of a product of operators, SIAM J. Matrix Anal. Appl. 11, 272–277, 1990.
  • [12] P. Bhunia, S.S. Dragomir, M.S. Moslehian, K. Paul, Lectures on numerical radius inequalities, Infosys Science Foundation Series in Mathematical Sciences, Springer Cham, (2022), XII+209 pp. https://doi.org/10.1007/978-3-031-13670-2
  • [13] P. Bhunia and K. Paul, A-numerical radius: new inequalities and characterization of equalities, Hacet. J. Math. Stat. 52(5), 1254–1262, 2023.
  • [14] C. Conde, F. Kittaneh, H. R. Moradi, and M. Sababheh, Numerical radii of operator matrices in terms of certain complex combinations of operators, Georgian Math, J. 31(4), 575–586, 2024.
  • [15] A. Frakis and F. Kittaneh, On p-numerical radius inequalities for commutators of operators, Quaest. Math. 2024. https://doi.org/10.2989/16073606.2024.2397562
  • [16] T. Furuta, Invitation to Linear Operators: From Matrices to Bounded Linear Operators on a Hilbert Space, CRC Press, 2001.
  • [17] T. Furuta, Extension of the Furuta inequality and Ando-Hiai log majorization, Linear Algebra Appl. 219, 139–155, 1995.
  • [18] I. Gümüş, H. R. Moradi and M. Sababheh, Operator inequalities via accretive transforms, Hacettepe Journal of Mathematics and Statistics 53(1), 40–52, 2024.
  • [19] K. E. Gustafson, D. K. M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices, Springer, New York, 1997.
  • [20] M. Hajmohamadi, R. Lashkaripour, and M. Bakherad, Some generalizations of numerical radius on off-diagonal part of $2\times 2$ operator matrices, J. Math. Inequal. 12(2), 447–457, 2018.
  • [21] O. Hirzallah, F. Kittaneh, and K. Shebrawi, Numerical radius inequalities for commutators of Hilbert space operators, Numer. Funct. Anal. Optim. 32(7), 739–749, 2011.
  • [22] M. Hosseini, B. Moosavi, and H. R. Moradi, An alternative estimate for the numerical radius of Hilbert space operators, Math. Slovaca 70(1), 233–237, 2020.
  • [23] M. Hosseini, M. E. Omidvar, Some reverse and numerical radius inequalities, Math. Slovaca 68(5), 1121–1128, 2018.
  • [24] J. C. Hou, H.K. Du, Norm inequalities of positive operator matrices, Integral Equ. Oper. Theory 22, 281–294, 1995.
  • [25] F. Kittaneh, Norm inequalities for certain operator sums, J. Funct. Anal. 143, 337– 348, 1997.
  • [26] F. Kittaneh, Norm inequalities for sums of positive operators, J. Oper. Theory 48, 95–103, 2002.
  • [27] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158(1), 11–17, 2003.
  • [28] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168(1), 73–80, 2005.
  • [29] F. Kittaneh, H. R. Moradi, and M. Sababheh, Sharper bounds for the numerical radius, Linear Multilinear Algebra https://doi.org/10.1080/03081087.2023. 2177248
  • [30] H. R. Moradi, M. Sababheh, More accurate numerical radius inequalities II, Linear Multilinear Algebra 69(5), 921–933, 2021.
  • [31] M. E. Omidvar, H. R. Moradi, and K. Shebrawi, Sharpening some classical numerical radius inequalities, Oper. Matrices 12(2), 407–416, 2018.
  • [32] H. Qiao, G. Hai, and E. Bai, Some refinements of numerical radius inequalities for $2\times 2$ operator matrices, J. Math. Inequal. 16(2), 425–444, 2022.
  • [33] M. Sababheh, Numerical radius inequalities via convexity, Linear Algebra Appl. 549, 67–78, 2018.
  • [34] M. Sababheh, H. R. Moradi, More accurate numerical radius inequalities (I), Linear Multilinear Algebra 69(10), 1964–1973, 2021.
  • [35] M. Sababheh and H. R. Moradi, Numerical radius of Kronecker product of matrices, J. Appl. Anal. Comput. 13(5), 2943–2954, 2023.
  • [36] A. Sheikhhosseini, M. Khosravi, and M. Sababheh, The weighted numerical radius, Ann. Funct. Anal. 13, Article 3, 2022.
  • [37] S. Sheybani, M. Sababheh, and H. R. Moradi, Weighted inequalities for the numerical radius, Vietnam J. Math. 51(2), 363–377, 2023.
  • [38] S. Soltani, A. Frakis, Further refinements of some numerical radius inequalities for operators, Oper. Matrices 17(1), 245–257, 2023.

Year 2025, Volume: 54 Issue: 5, 1826 - 1838, 29.10.2025
https://doi.org/10.15672/hujms.1579443

Abstract

References

  • [1] A. Abu-Omar, F. Kittaneh, Numerical radius inequalities for $n\times n$ operator matrices, Linear Algebra Appl. 468, 18–26, 2015.
  • [2] A. Abu-Omar, F. Kittaneh, Upper and lower bounds for the numerical radius with an application to involution operators, Rocky Mountain J. Math. 45(4), 1055–1065, 2015.
  • [3] D. Afraz, R. Lashkaripour, and M. Bakherad, Further norm and numerical radius inequalities for sum of Hilbert space operators, Filomat 38(9), 3235–3242, 2024.
  • [4] E. Alizadeh and A. Farokhina, some refinements of numerical radius inequalities for Hilbert space operators, Jordan J. Math. Stat. 15(1), 55-63, 2022.
  • [5] B. Al-Naddaf, A. Burqan, and F. Kittaneh, Generalized numerical radius inequalities involving positive semidefinite block matrices, J. Math. Inequal. 17(4), 1363–1370, 2023.
  • [6] M. W. Alomari, M. Sababheh, C. Conde, and H. R. Moradi, Generalized Euclidean Operator Radius, Georgian Math. J. 31(3), 369–380, 2024.
  • [7] M. Alomari, S. Sahoo and M. Bakherad, Further numerical radius inequalities, J. Math. Inequal. 16(1), 307–326, 2022.
  • [8] M. Bakherad and F. Kittaneh, Numerical radius inequalities involving commutators of $G_1$ operators, Complex Anal. Oper. Theory 13(4), 1557–1567, 2019.
  • [9] M. Bakherad and K. Shebrawi, Upper bounds for numerical radius inequalities involving off-diagonal operator matrices, Ann. Funct. Anal. 9(3), 297–309, 2018.
  • [10] A. Benmakhlouf, O. Hirzallah, and F. Kittaneh, On the p-numerical radii of Hilbert space operators, Linear Multilinear Algebra 69(15), 2813–2829, 2021.
  • [11] R. Bhatia, F. Kittaneh, On the singular values of a product of operators, SIAM J. Matrix Anal. Appl. 11, 272–277, 1990.
  • [12] P. Bhunia, S.S. Dragomir, M.S. Moslehian, K. Paul, Lectures on numerical radius inequalities, Infosys Science Foundation Series in Mathematical Sciences, Springer Cham, (2022), XII+209 pp. https://doi.org/10.1007/978-3-031-13670-2
  • [13] P. Bhunia and K. Paul, A-numerical radius: new inequalities and characterization of equalities, Hacet. J. Math. Stat. 52(5), 1254–1262, 2023.
  • [14] C. Conde, F. Kittaneh, H. R. Moradi, and M. Sababheh, Numerical radii of operator matrices in terms of certain complex combinations of operators, Georgian Math, J. 31(4), 575–586, 2024.
  • [15] A. Frakis and F. Kittaneh, On p-numerical radius inequalities for commutators of operators, Quaest. Math. 2024. https://doi.org/10.2989/16073606.2024.2397562
  • [16] T. Furuta, Invitation to Linear Operators: From Matrices to Bounded Linear Operators on a Hilbert Space, CRC Press, 2001.
  • [17] T. Furuta, Extension of the Furuta inequality and Ando-Hiai log majorization, Linear Algebra Appl. 219, 139–155, 1995.
  • [18] I. Gümüş, H. R. Moradi and M. Sababheh, Operator inequalities via accretive transforms, Hacettepe Journal of Mathematics and Statistics 53(1), 40–52, 2024.
  • [19] K. E. Gustafson, D. K. M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices, Springer, New York, 1997.
  • [20] M. Hajmohamadi, R. Lashkaripour, and M. Bakherad, Some generalizations of numerical radius on off-diagonal part of $2\times 2$ operator matrices, J. Math. Inequal. 12(2), 447–457, 2018.
  • [21] O. Hirzallah, F. Kittaneh, and K. Shebrawi, Numerical radius inequalities for commutators of Hilbert space operators, Numer. Funct. Anal. Optim. 32(7), 739–749, 2011.
  • [22] M. Hosseini, B. Moosavi, and H. R. Moradi, An alternative estimate for the numerical radius of Hilbert space operators, Math. Slovaca 70(1), 233–237, 2020.
  • [23] M. Hosseini, M. E. Omidvar, Some reverse and numerical radius inequalities, Math. Slovaca 68(5), 1121–1128, 2018.
  • [24] J. C. Hou, H.K. Du, Norm inequalities of positive operator matrices, Integral Equ. Oper. Theory 22, 281–294, 1995.
  • [25] F. Kittaneh, Norm inequalities for certain operator sums, J. Funct. Anal. 143, 337– 348, 1997.
  • [26] F. Kittaneh, Norm inequalities for sums of positive operators, J. Oper. Theory 48, 95–103, 2002.
  • [27] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158(1), 11–17, 2003.
  • [28] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168(1), 73–80, 2005.
  • [29] F. Kittaneh, H. R. Moradi, and M. Sababheh, Sharper bounds for the numerical radius, Linear Multilinear Algebra https://doi.org/10.1080/03081087.2023. 2177248
  • [30] H. R. Moradi, M. Sababheh, More accurate numerical radius inequalities II, Linear Multilinear Algebra 69(5), 921–933, 2021.
  • [31] M. E. Omidvar, H. R. Moradi, and K. Shebrawi, Sharpening some classical numerical radius inequalities, Oper. Matrices 12(2), 407–416, 2018.
  • [32] H. Qiao, G. Hai, and E. Bai, Some refinements of numerical radius inequalities for $2\times 2$ operator matrices, J. Math. Inequal. 16(2), 425–444, 2022.
  • [33] M. Sababheh, Numerical radius inequalities via convexity, Linear Algebra Appl. 549, 67–78, 2018.
  • [34] M. Sababheh, H. R. Moradi, More accurate numerical radius inequalities (I), Linear Multilinear Algebra 69(10), 1964–1973, 2021.
  • [35] M. Sababheh and H. R. Moradi, Numerical radius of Kronecker product of matrices, J. Appl. Anal. Comput. 13(5), 2943–2954, 2023.
  • [36] A. Sheikhhosseini, M. Khosravi, and M. Sababheh, The weighted numerical radius, Ann. Funct. Anal. 13, Article 3, 2022.
  • [37] S. Sheybani, M. Sababheh, and H. R. Moradi, Weighted inequalities for the numerical radius, Vietnam J. Math. 51(2), 363–377, 2023.
  • [38] S. Soltani, A. Frakis, Further refinements of some numerical radius inequalities for operators, Oper. Matrices 17(1), 245–257, 2023.
There are 38 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Mathematics
Authors

Fuad Kıttaneh 0000-0003-0308-365X

Hamid Moradi 0000-0002-0233-0455

Mohammad Sababheh 0000-0002-1321-2702

Early Pub Date April 11, 2025
Publication Date October 29, 2025
Submission Date November 5, 2024
Acceptance Date February 11, 2025
Published in Issue Year 2025 Volume: 54 Issue: 5

Cite

APA Kıttaneh, F., Moradi, H., & Sababheh, M. (2025). On the numerical radii of certain operator forms. Hacettepe Journal of Mathematics and Statistics, 54(5), 1826-1838. https://doi.org/10.15672/hujms.1579443
AMA Kıttaneh F, Moradi H, Sababheh M. On the numerical radii of certain operator forms. Hacettepe Journal of Mathematics and Statistics. October 2025;54(5):1826-1838. doi:10.15672/hujms.1579443
Chicago Kıttaneh, Fuad, Hamid Moradi, and Mohammad Sababheh. “On the Numerical Radii of Certain Operator Forms”. Hacettepe Journal of Mathematics and Statistics 54, no. 5 (October 2025): 1826-38. https://doi.org/10.15672/hujms.1579443.
EndNote Kıttaneh F, Moradi H, Sababheh M (October 1, 2025) On the numerical radii of certain operator forms. Hacettepe Journal of Mathematics and Statistics 54 5 1826–1838.
IEEE F. Kıttaneh, H. Moradi, and M. Sababheh, “On the numerical radii of certain operator forms”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, pp. 1826–1838, 2025, doi: 10.15672/hujms.1579443.
ISNAD Kıttaneh, Fuad et al. “On the Numerical Radii of Certain Operator Forms”. Hacettepe Journal of Mathematics and Statistics 54/5 (October2025), 1826-1838. https://doi.org/10.15672/hujms.1579443.
JAMA Kıttaneh F, Moradi H, Sababheh M. On the numerical radii of certain operator forms. Hacettepe Journal of Mathematics and Statistics. 2025;54:1826–1838.
MLA Kıttaneh, Fuad et al. “On the Numerical Radii of Certain Operator Forms”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, 2025, pp. 1826-38, doi:10.15672/hujms.1579443.
Vancouver Kıttaneh F, Moradi H, Sababheh M. On the numerical radii of certain operator forms. Hacettepe Journal of Mathematics and Statistics. 2025;54(5):1826-38.