On the numerical radii of certain operator forms
Year 2025,
Volume: 54 Issue: 5, 1826 - 1838, 29.10.2025
Fuad Kıttaneh
,
Hamid Moradi
,
Mohammad Sababheh
Abstract
The main goal of this paper is to present new bounds for the norms and numerical radii of certain Hilbert space operators, which involve the sums of operators' products. The obtained result will be utilized to obtain some equivalent conditions regarding certain operator identities, to find upper bounds for the sum of two operators, to obtain certain refinements of celebrated numerical radius bounds, and to present a new reverse for the triangle inequality when positive operators are treated.
References
-
[1] A. Abu-Omar, F. Kittaneh, Numerical radius inequalities for $n\times n$ operator matrices,
Linear Algebra Appl. 468, 18–26, 2015.
-
[2] A. Abu-Omar, F. Kittaneh, Upper and lower bounds for the numerical radius with
an application to involution operators, Rocky Mountain J. Math. 45(4), 1055–1065,
2015.
-
[3] D. Afraz, R. Lashkaripour, and M. Bakherad, Further norm and numerical radius
inequalities for sum of Hilbert space operators, Filomat 38(9), 3235–3242, 2024.
-
[4] E. Alizadeh and A. Farokhina, some refinements of numerical radius inequalities for
Hilbert space operators, Jordan J. Math. Stat. 15(1), 55-63, 2022.
-
[5] B. Al-Naddaf, A. Burqan, and F. Kittaneh, Generalized numerical radius inequalities
involving positive semidefinite block matrices, J. Math. Inequal. 17(4), 1363–1370,
2023.
-
[6] M. W. Alomari, M. Sababheh, C. Conde, and H. R. Moradi, Generalized Euclidean
Operator Radius, Georgian Math. J. 31(3), 369–380, 2024.
-
[7] M. Alomari, S. Sahoo and M. Bakherad, Further numerical radius inequalities, J.
Math. Inequal. 16(1), 307–326, 2022.
-
[8] M. Bakherad and F. Kittaneh, Numerical radius inequalities involving commutators
of $G_1$ operators, Complex Anal. Oper. Theory 13(4), 1557–1567, 2019.
-
[9] M. Bakherad and K. Shebrawi, Upper bounds for numerical radius inequalities involving
off-diagonal operator matrices, Ann. Funct. Anal. 9(3), 297–309, 2018.
-
[10] A. Benmakhlouf, O. Hirzallah, and F. Kittaneh, On the p-numerical radii of Hilbert
space operators, Linear Multilinear Algebra 69(15), 2813–2829, 2021.
-
[11] R. Bhatia, F. Kittaneh, On the singular values of a product of operators, SIAM J.
Matrix Anal. Appl. 11, 272–277, 1990.
-
[12] P. Bhunia, S.S. Dragomir, M.S. Moslehian, K. Paul, Lectures on numerical radius
inequalities, Infosys Science Foundation Series in Mathematical Sciences, Springer
Cham, (2022), XII+209 pp. https://doi.org/10.1007/978-3-031-13670-2
-
[13] P. Bhunia and K. Paul, A-numerical radius: new inequalities and characterization of
equalities, Hacet. J. Math. Stat. 52(5), 1254–1262, 2023.
-
[14] C. Conde, F. Kittaneh, H. R. Moradi, and M. Sababheh, Numerical radii of operator
matrices in terms of certain complex combinations of operators, Georgian Math, J.
31(4), 575–586, 2024.
-
[15] A. Frakis and F. Kittaneh, On p-numerical radius inequalities for commutators of operators,
Quaest. Math. 2024. https://doi.org/10.2989/16073606.2024.2397562
-
[16] T. Furuta, Invitation to Linear Operators: From Matrices to Bounded Linear Operators
on a Hilbert Space, CRC Press, 2001.
-
[17] T. Furuta, Extension of the Furuta inequality and Ando-Hiai log majorization, Linear
Algebra Appl. 219, 139–155, 1995.
-
[18] I. Gümüş, H. R. Moradi and M. Sababheh, Operator inequalities via accretive transforms,
Hacettepe Journal of Mathematics and Statistics 53(1), 40–52, 2024.
-
[19] K. E. Gustafson, D. K. M. Rao, Numerical Range: The Field of Values of Linear
Operators and Matrices, Springer, New York, 1997.
-
[20] M. Hajmohamadi, R. Lashkaripour, and M. Bakherad, Some generalizations of numerical
radius on off-diagonal part of $2\times 2$ operator matrices, J. Math. Inequal. 12(2),
447–457, 2018.
-
[21] O. Hirzallah, F. Kittaneh, and K. Shebrawi, Numerical radius inequalities for commutators
of Hilbert space operators, Numer. Funct. Anal. Optim. 32(7), 739–749,
2011.
-
[22] M. Hosseini, B. Moosavi, and H. R. Moradi, An alternative estimate for the numerical
radius of Hilbert space operators, Math. Slovaca 70(1), 233–237, 2020.
-
[23] M. Hosseini, M. E. Omidvar, Some reverse and numerical radius inequalities, Math.
Slovaca 68(5), 1121–1128, 2018.
-
[24] J. C. Hou, H.K. Du, Norm inequalities of positive operator matrices, Integral Equ.
Oper. Theory 22, 281–294, 1995.
-
[25] F. Kittaneh, Norm inequalities for certain operator sums, J. Funct. Anal. 143, 337–
348, 1997.
-
[26] F. Kittaneh, Norm inequalities for sums of positive operators, J. Oper. Theory 48,
95–103, 2002.
-
[27] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius
of the Frobenius companion matrix, Studia Math. 158(1), 11–17, 2003.
-
[28] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math.
168(1), 73–80, 2005.
-
[29] F. Kittaneh, H. R. Moradi, and M. Sababheh, Sharper bounds for the numerical
radius, Linear Multilinear Algebra https://doi.org/10.1080/03081087.2023.
2177248
-
[30] H. R. Moradi, M. Sababheh, More accurate numerical radius inequalities II, Linear
Multilinear Algebra 69(5), 921–933, 2021.
-
[31] M. E. Omidvar, H. R. Moradi, and K. Shebrawi, Sharpening some classical numerical
radius inequalities, Oper. Matrices 12(2), 407–416, 2018.
-
[32] H. Qiao, G. Hai, and E. Bai, Some refinements of numerical radius inequalities for
$2\times 2$ operator matrices, J. Math. Inequal. 16(2), 425–444, 2022.
-
[33] M. Sababheh, Numerical radius inequalities via convexity, Linear Algebra Appl. 549,
67–78, 2018.
-
[34] M. Sababheh, H. R. Moradi, More accurate numerical radius inequalities (I), Linear
Multilinear Algebra 69(10), 1964–1973, 2021.
-
[35] M. Sababheh and H. R. Moradi, Numerical radius of Kronecker product of matrices,
J. Appl. Anal. Comput. 13(5), 2943–2954, 2023.
-
[36] A. Sheikhhosseini, M. Khosravi, and M. Sababheh, The weighted numerical radius,
Ann. Funct. Anal. 13, Article 3, 2022.
-
[37] S. Sheybani, M. Sababheh, and H. R. Moradi, Weighted inequalities for the numerical
radius, Vietnam J. Math. 51(2), 363–377, 2023.
-
[38] S. Soltani, A. Frakis, Further refinements of some numerical radius inequalities for
operators, Oper. Matrices 17(1), 245–257, 2023.
Year 2025,
Volume: 54 Issue: 5, 1826 - 1838, 29.10.2025
Fuad Kıttaneh
,
Hamid Moradi
,
Mohammad Sababheh
References
-
[1] A. Abu-Omar, F. Kittaneh, Numerical radius inequalities for $n\times n$ operator matrices,
Linear Algebra Appl. 468, 18–26, 2015.
-
[2] A. Abu-Omar, F. Kittaneh, Upper and lower bounds for the numerical radius with
an application to involution operators, Rocky Mountain J. Math. 45(4), 1055–1065,
2015.
-
[3] D. Afraz, R. Lashkaripour, and M. Bakherad, Further norm and numerical radius
inequalities for sum of Hilbert space operators, Filomat 38(9), 3235–3242, 2024.
-
[4] E. Alizadeh and A. Farokhina, some refinements of numerical radius inequalities for
Hilbert space operators, Jordan J. Math. Stat. 15(1), 55-63, 2022.
-
[5] B. Al-Naddaf, A. Burqan, and F. Kittaneh, Generalized numerical radius inequalities
involving positive semidefinite block matrices, J. Math. Inequal. 17(4), 1363–1370,
2023.
-
[6] M. W. Alomari, M. Sababheh, C. Conde, and H. R. Moradi, Generalized Euclidean
Operator Radius, Georgian Math. J. 31(3), 369–380, 2024.
-
[7] M. Alomari, S. Sahoo and M. Bakherad, Further numerical radius inequalities, J.
Math. Inequal. 16(1), 307–326, 2022.
-
[8] M. Bakherad and F. Kittaneh, Numerical radius inequalities involving commutators
of $G_1$ operators, Complex Anal. Oper. Theory 13(4), 1557–1567, 2019.
-
[9] M. Bakherad and K. Shebrawi, Upper bounds for numerical radius inequalities involving
off-diagonal operator matrices, Ann. Funct. Anal. 9(3), 297–309, 2018.
-
[10] A. Benmakhlouf, O. Hirzallah, and F. Kittaneh, On the p-numerical radii of Hilbert
space operators, Linear Multilinear Algebra 69(15), 2813–2829, 2021.
-
[11] R. Bhatia, F. Kittaneh, On the singular values of a product of operators, SIAM J.
Matrix Anal. Appl. 11, 272–277, 1990.
-
[12] P. Bhunia, S.S. Dragomir, M.S. Moslehian, K. Paul, Lectures on numerical radius
inequalities, Infosys Science Foundation Series in Mathematical Sciences, Springer
Cham, (2022), XII+209 pp. https://doi.org/10.1007/978-3-031-13670-2
-
[13] P. Bhunia and K. Paul, A-numerical radius: new inequalities and characterization of
equalities, Hacet. J. Math. Stat. 52(5), 1254–1262, 2023.
-
[14] C. Conde, F. Kittaneh, H. R. Moradi, and M. Sababheh, Numerical radii of operator
matrices in terms of certain complex combinations of operators, Georgian Math, J.
31(4), 575–586, 2024.
-
[15] A. Frakis and F. Kittaneh, On p-numerical radius inequalities for commutators of operators,
Quaest. Math. 2024. https://doi.org/10.2989/16073606.2024.2397562
-
[16] T. Furuta, Invitation to Linear Operators: From Matrices to Bounded Linear Operators
on a Hilbert Space, CRC Press, 2001.
-
[17] T. Furuta, Extension of the Furuta inequality and Ando-Hiai log majorization, Linear
Algebra Appl. 219, 139–155, 1995.
-
[18] I. Gümüş, H. R. Moradi and M. Sababheh, Operator inequalities via accretive transforms,
Hacettepe Journal of Mathematics and Statistics 53(1), 40–52, 2024.
-
[19] K. E. Gustafson, D. K. M. Rao, Numerical Range: The Field of Values of Linear
Operators and Matrices, Springer, New York, 1997.
-
[20] M. Hajmohamadi, R. Lashkaripour, and M. Bakherad, Some generalizations of numerical
radius on off-diagonal part of $2\times 2$ operator matrices, J. Math. Inequal. 12(2),
447–457, 2018.
-
[21] O. Hirzallah, F. Kittaneh, and K. Shebrawi, Numerical radius inequalities for commutators
of Hilbert space operators, Numer. Funct. Anal. Optim. 32(7), 739–749,
2011.
-
[22] M. Hosseini, B. Moosavi, and H. R. Moradi, An alternative estimate for the numerical
radius of Hilbert space operators, Math. Slovaca 70(1), 233–237, 2020.
-
[23] M. Hosseini, M. E. Omidvar, Some reverse and numerical radius inequalities, Math.
Slovaca 68(5), 1121–1128, 2018.
-
[24] J. C. Hou, H.K. Du, Norm inequalities of positive operator matrices, Integral Equ.
Oper. Theory 22, 281–294, 1995.
-
[25] F. Kittaneh, Norm inequalities for certain operator sums, J. Funct. Anal. 143, 337–
348, 1997.
-
[26] F. Kittaneh, Norm inequalities for sums of positive operators, J. Oper. Theory 48,
95–103, 2002.
-
[27] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius
of the Frobenius companion matrix, Studia Math. 158(1), 11–17, 2003.
-
[28] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math.
168(1), 73–80, 2005.
-
[29] F. Kittaneh, H. R. Moradi, and M. Sababheh, Sharper bounds for the numerical
radius, Linear Multilinear Algebra https://doi.org/10.1080/03081087.2023.
2177248
-
[30] H. R. Moradi, M. Sababheh, More accurate numerical radius inequalities II, Linear
Multilinear Algebra 69(5), 921–933, 2021.
-
[31] M. E. Omidvar, H. R. Moradi, and K. Shebrawi, Sharpening some classical numerical
radius inequalities, Oper. Matrices 12(2), 407–416, 2018.
-
[32] H. Qiao, G. Hai, and E. Bai, Some refinements of numerical radius inequalities for
$2\times 2$ operator matrices, J. Math. Inequal. 16(2), 425–444, 2022.
-
[33] M. Sababheh, Numerical radius inequalities via convexity, Linear Algebra Appl. 549,
67–78, 2018.
-
[34] M. Sababheh, H. R. Moradi, More accurate numerical radius inequalities (I), Linear
Multilinear Algebra 69(10), 1964–1973, 2021.
-
[35] M. Sababheh and H. R. Moradi, Numerical radius of Kronecker product of matrices,
J. Appl. Anal. Comput. 13(5), 2943–2954, 2023.
-
[36] A. Sheikhhosseini, M. Khosravi, and M. Sababheh, The weighted numerical radius,
Ann. Funct. Anal. 13, Article 3, 2022.
-
[37] S. Sheybani, M. Sababheh, and H. R. Moradi, Weighted inequalities for the numerical
radius, Vietnam J. Math. 51(2), 363–377, 2023.
-
[38] S. Soltani, A. Frakis, Further refinements of some numerical radius inequalities for
operators, Oper. Matrices 17(1), 245–257, 2023.