Research Article
BibTex RIS Cite

Atık biyokütleden (Tütün Sapı) Mikrodalga Destekli İmpregnasyon Yöntemi ile Aktif Karbon Sentezi ve Karakterizasyonu

Year 2022, , 1 - 14, 29.04.2022
https://doi.org/10.46578/humder.1076166

Abstract

Bu çalışmada atık biyokütle kaynağı tütün saplarından (TS) aktif karbon sentezi yapılmıştır. Aktif karbonlar geleneksel aktivasyon yöntemine entegre edilen mikrodalga ortamında kimyasal aktifleştirici (ZnCl2) ile impregnasyon işlemi sonucu elde edilmiştir. Ayrıca mikrodalga ortamı (gaz, dalga boyu ve süre), Fırın aktivasyonu (süre ve sıcaklık) ve impregnasyon oranlarının sentez üzerindeki etkileri incelenmiştir. Aktif karbon karakterizasyonu BET, FT-IR ve SEM analizleri kullanılarak incelenmiştir. ZnCl2 kimyasalı ile mikrodalga destekli sentezlenen aktif karbonun yüzey alanı 731,799 m2 g-1 ve iyot sayısı 1048 mg g-1 olarak bulunmuştur. Ayrıca çalışma kapsamında aktif karbon sentezi için kullanılan yöntemin özgünlüğünü kıyaslamak için ZnCl2 kimyasalı ile geleneksel aktivasyon işlemi de yapılmıştır. Geleneksel yöntem ile elde edilen aktif karbon yüzey alanı 323,648 m2 g-1 ve iyot sayısı 438 mg g-1 olarak bulunmuştur. Elde edilen sonuçlara göre mikrodalga destekli impregnasyon işleminin aktif karbon sentezinde önemli etkiye sahip olduğu görülmektedir.

Supporting Institution

Harran Üniversitesi

Project Number

21181

References

  • [1] G. Zhang, B. Lei, S. Chen, H. Xie, and G. Zhou, “Activated carbon adsorbents with micro-mesoporous structure derived from waste biomass by stepwise activation for toluene removal from air,” J. Environ. Chem. Eng., vol. 9, no. 4, p. 105387, Aug. 2021, doi: 10.1016/j.jece.2021.105387.
  • [2] X. Zhao, X. Zeng, Y. Qin, X. Li, T. Zhu, and X. Tang, “An experimental and theoretical study of the adsorption removal of toluene and chlorobenzene on coconut shell derived carbon,” Chemosphere, vol. 206, pp. 285–292, Sep. 2018, doi: 10.1016/j.chemosphere.2018.04.126.
  • [3] J. Jjagwe, P. W. Olupot, E. Menya, and H. M. Kalibbala, “Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review,” J. Bioresour. Bioprod., vol. 6, no. 4, pp. 292–322, Nov. 2021, doi: 10.1016/j.jobab.2021.03.003.
  • [4] J. Yang and K. Qiu, “Experimental Design To Optimize the Preparation of Activated Carbons from Herb Residues by Vacuum and Traditional ZnCl 2 Chemical Activation,” Ind. Eng. Chem. Res., vol. 50, no. 7, pp. 4057–4064, Apr. 2011, doi: 10.1021/ie101531p.
  • [5] V. Thakur, E. Sharma, A. Guleria, S. Sangar, and K. Singh, “Modification and management of lignocellulosic waste as an ecofriendly biosorbent for the application of heavy metal ions sorption,” Mater. Today Proc., vol. 32, pp. 608–619, 2020, doi: 10.1016/j.matpr.2020.02.756.
  • [6] E. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D. O. Sulistiono, and D. Prasetyoko, “Review on recent advances of carbon based adsorbent for methylene blue removal from waste water,” Mater. Today Chem., vol. 16, p. 100233, Jun. 2020, doi: 10.1016/j.mtchem.2019.100233.
  • [7] A. O. Abo El Naga, M. El Saied, S. A. Shaban, and F. Y. El Kady, “Fast removal of diclofenac sodium from aqueous solution using sugar cane bagasse-derived activated carbon,” J. Mol. Liq., vol. 285, pp. 9–19, Jul. 2019, doi: 10.1016/j.molliq.2019.04.062.
  • [8] C.-S. Chou, S.-H. Lin, and W.-C. Lu, “Preparation and characterization of solid biomass fuel made from rice straw and rice bran,” Fuel Process. Technol., vol. 90, no. 7–8, pp. 980–987, Jul. 2009, doi: 10.1016/j.fuproc.2009.04.012.
  • [9] T. M. Huggins, A. Haeger, J. C. Biffinger, and Z. J. Ren, “Granular biochar compared with activated carbon for wastewater treatment and resource recovery,” Water Res., vol. 94, pp. 225–232, May 2016, doi: 10.1016/j.watres.2016.02.059.
  • [10] Q. Yuan et al., “N, S-Codoped Activated Carbon Material with Ultra-High Surface Area for High-Performance Supercapacitors,” Polymers (Basel)., vol. 12, no. 9, p. 1982, Aug. 2020, doi: 10.3390/polym12091982.
  • [11] FAO, “Crops and livestock products,” 05.01.2022, 2020. https://www.fao.org/faostat/en/#data/QCL/visualize.
  • [12] G.-N. Guo, B.-B. Yang, Q.-M. Zhang, and C. Zhang, “Porous carbon from tobacco stalk for removal of organic dyes from water,” RSC Adv., vol. 9, no. 58, pp. 33848–33852, 2019, doi: 10.1039/C9RA06688H.
  • [13] H. He, N. Zhang, N. Chen, Z. Lei, K. Shimizu, and Z. Zhang, “Efficient phosphate removal from wastewater by MgAl-LDHs modified hydrochar derived from tobacco stalk,” Bioresour. Technol. Reports, vol. 8, p. 100348, Dec. 2019, doi: 10.1016/j.biteb.2019.100348.
  • [14] N. Esfandiary, S. Bagheri, and A. Heydari, “Magnetic γ-Fe2O3@Cu-LDH intercalated with Palladium Cysteine: An efficient dual nano catalyst in tandem C N coupling and cyclization progress of synthesis quinolines,” Appl. Clay Sci., vol. 198, p. 105841, Nov. 2020, doi: 10.1016/j.clay.2020.105841.
  • [15] K. Sophanodorn, Y. Unpaprom, K. Whangchai, N. Homdoung, N. Dussadee, and R. Ramaraj, “Environmental management and valorization of cultivated tobacco stalks by combined pretreatment for potential bioethanol production,” Biomass Convers. Biorefinery, Sep. 2020, doi: 10.1007/s13399-020-00992-8.
  • [16] P. S. Thue et al., “Effects of first-row transition metals and impregnation ratios on the physicochemical properties of microwave-assisted activated carbons from wood biomass,” J. Colloid Interface Sci., vol. 486, pp. 163–175, Jan. 2017, doi: 10.1016/j.jcis.2016.09.070.
  • [17] S. Salem, Z. Teimouri, and A. Salem, “Fabrication of magnetic activated carbon by carbothermal functionalization of agriculture waste via microwave-assisted technique for cationic dye adsorption,” Adv. Powder Technol., vol. 31, no. 10, pp. 4301–4309, Oct. 2020, doi: 10.1016/j.apt.2020.09.007.
  • [18] O. Baytar, Ö. Şahin, C. Saka, and S. Ağrak, “Characterization of Microwave and Conventional Heating on the Pyrolysis of Pistachio Shells for the Adsorption of Methylene Blue and Iodine,” Anal. Lett., vol. 51, no. 14, pp. 2205–2220, Sep. 2018, doi: 10.1080/00032719.2017.1415920.
  • [19] R. K. Liew et al., “Microwave pyrolysis with KOH/NaOH mixture activation: A new approach to produce micro-mesoporous activated carbon for textile dye adsorption,” Bioresour. Technol., vol. 266, pp. 1–10, Oct. 2018, doi: 10.1016/j.biortech.2018.06.051.
  • [20] R. Hoseinzadeh Hesas, W. M. A. Wan Daud, J. N. Sahu, and A. Arami-Niya, “The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review,” J. Anal. Appl. Pyrolysis, vol. 100, pp. 1–11, Mar. 2013, doi: 10.1016/j.jaap.2012.12.019.
  • [21] Y. M. Sharif, C. Saka, O. Baytar, and Ö. Şahin, “Preparation and Characterization of Activated Carbon from Sesame Seed Shells by Microwave and Conventional Heating with Zinc Chloride Activation,” Anal. Lett., vol. 51, no. 17, pp. 2733–2746, Nov. 2018, doi: 10.1080/00032719.2018.1450415.
  • [22] K. Y. Foo and B. H. Hameed, “Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating,” Bioresour. Technol., vol. 111, pp. 425–432, May 2012, doi: 10.1016/j.biortech.2012.01.141.
  • [23] M. S. İzgi, C. Saka, O. Baytar, G. Saraçoğlu, and Ö. Şahin, “Preparation and Characterization of Activated Carbon from Microwave and Conventional Heated Almond Shells Using Phosphoric Acid Activation,” Anal. Lett., vol. 52, no. 5, pp. 772–789, Mar. 2019, doi: 10.1080/00032719.2018.1495223.
  • [24] D. Prahas, Y. Kartika, N. Indraswati, and S. Ismadji, “Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization,” Chem. Eng. J., vol. 140, no. 1–3, pp. 32–42, Jul. 2008, doi: 10.1016/j.cej.2007.08.032.
  • [25] J. Xu, L. Chen, H. Qu, Y. Jiao, J. Xie, and G. Xing, “Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H 3 PO 4,” Appl. Surf. Sci., vol. 320, pp. 674–680, Nov. 2014, doi: 10.1016/j.apsusc.2014.08.178.
  • [26] M. K. B. Gratuito, T. Panyathanmaporn, R.-A. Chumnanklang, N. Sirinuntawittaya, and A. Dutta, “Production of activated carbon from coconut shell: Optimization using response surface methodology,” Bioresour. Technol., vol. 99, no. 11, pp. 4887–4895, Jul. 2008, doi: 10.1016/j.biortech.2007.09.042.
  • [27] F. Kaouah, S. Boumaza, T. Berrama, M. Trari, and Z. Bendjama, “Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46,” J. Clean. Prod., vol. 54, pp. 296–306, Sep. 2013, doi: 10.1016/j.jclepro.2013.04.038.
  • [28] L. K. G. Bhatta, K. Venkatesh, K. N, S. K. Gundanna, and U. M. Bhatta, “Synthesis and characterization of activated carbon from Delonix regia seeds for CO2 adsorption,” Energy Clim. Chang., vol. 2, p. 100064, Dec. 2021, doi: 10.1016/j.egycc.2021.100064.
  • [29] F. Kaouah, S. Boumaza, T. Berrama, M. Trari, and Z. Bendjama, “Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46,” J. Clean. Prod., vol. 54, pp. 296–306, Sep. 2013, doi: 10.1016/j.jclepro.2013.04.038.
  • [30] J. Mohammed, N. S. Nasri, M. A. Ahmad Zaini, U. D. Hamza, and F. N. Ani, “Adsorption of benzene and toluene onto KOH activated coconut shell based carbon treated with NH 3,” Int. Biodeterior. Biodegradation, vol. 102, pp. 245–255, Aug. 2015, doi: 10.1016/j.ibiod.2015.02.012.
  • [31] J. Liu et al., “Characterization and utilization of industrial microbial waste as novel adsorbent to remove single and mixed dyes from water,” J. Clean. Prod., vol. 208, pp. 552–562, Jan. 2019, doi: 10.1016/j.jclepro.2018.10.136.
  • [32] M. Al Bahri, L. Calvo, M. A. Gilarranz, and J. J. Rodriguez, “Activated carbon from grape seeds upon chemical activation with phosphoric acid: Application to the adsorption of diuron from water,” Chem. Eng. J., vol. 203, pp. 348–356, Sep. 2012, doi: 10.1016/j.cej.2012.07.053.
  • [33] A. Stavrinou, C. A. Aggelopoulos, and C. D. Tsakiroglou, “Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: Adsorption kinetics and equilibrium isotherms as a tool,” J. Environ. Chem. Eng., vol. 6, no. 6, pp. 6958–6970, Dec. 2018, doi: 10.1016/j.jece.2018.10.063.
  • [34] N. Sebeia, M. Jabli, A. Ghith, Y. El Ghoul, and F. M. Alminderej, “Populus tremula, Nerium oleander and Pergularia tomentosa seed fibers as sources of cellulose and lignin for the bio-sorption of methylene blue,” Int. J. Biol. Macromol., vol. 121, pp. 655–665, Jan. 2019, doi: 10.1016/j.ijbiomac.2018.10.070.
  • [35] S. G. Nasab, A. Semnani, A. Teimouri, M. J. Yazd, T. M. Isfahani, and S. Habibollahi, “Decolorization of crystal violet from aqueous solutions by a novel adsorbent chitosan/nanodiopside using response surface methodology and artificial neural network-genetic algorithm,” Int. J. Biol. Macromol., vol. 124, pp. 429–443, Mar. 2019, doi: 10.1016/j.ijbiomac.2018.11.148.
  • [36] A. Valencia et al., “Cyclohexane and benzene separation by fixed-bed adsorption on activated carbons prepared from coconut shell,” Environ. Technol. Innov., vol. 25, p. 102076, Feb. 2022, doi: 10.1016/j.eti.2021.102076.
  • [37] W.-X. Zhang, L. Lai, P. Mei, Y. Li, Y.-H. Li, and Y. Liu, “Enhanced removal efficiency of acid red 18 from aqueous solution using wheat bran modified by multiple quaternary ammonium salts,” Chem. Phys. Lett., vol. 710, pp. 193–201, Oct. 2018, doi: 10.1016/j.cplett.2018.09.009.
  • [38] T. A. Saleh and I. Ali, “Synthesis of polyamide grafted carbon microspheres for removal of rhodamine B dye and heavy metals,” J. Environ. Chem. Eng., vol. 6, no. 4, pp. 5361–5368, Aug. 2018, doi: 10.1016/j.jece.2018.08.033.
  • [39] S. Roy and J.-W. Rhim, “Melanin-Mediated Synthesis of Copper Oxide Nanoparticles and Preparation of Functional Agar/CuO NP Nanocomposite Films,” J. Nanomater., vol. 2019, pp. 1–10, Feb. 2019, doi: 10.1155/2019/2840517.

Synthesis and Characterization of Activated Carbon from Waste Biomass (Tobacco Stalk) by Microwave Assisted Impregnation Method

Year 2022, , 1 - 14, 29.04.2022
https://doi.org/10.46578/humder.1076166

Abstract

In this study, activated carbon was synthesized from waste biomass source tobacco stalks (TS). Activated carbons were obtained because of impregnation with chemical activator (ZnCl2) in the microwave environment, which was integrated into the traditional activation method. In addition, the effects of microwave environment (gas, wavelength, and time), oven activation (time and temperature) and impregnation rates on synthesis were investigated. Activated carbon characterization was investigated using BET, FT-IR and SEM analyses. The surface area of the activated carbon synthesized with the ZnCl2 chemical, and microwave assisted was found to be 731,799 m2 g-1 and the iodine number was 1048 mg g-1. In addition, to compare the specificity of the method used for the synthesis of activated carbon within the scope of the study, the traditional activation process with the chemical ZnCl2 was also performed. The surface area of activated carbon obtained by the traditional method was found to be 323,648 m2 g-1 and the iodine number was 438 mg g-1. According to the results obtained, it is seen that the microwave assisted impregnation process has a significant effect on the synthesis of activated carbon.

Project Number

21181

References

  • [1] G. Zhang, B. Lei, S. Chen, H. Xie, and G. Zhou, “Activated carbon adsorbents with micro-mesoporous structure derived from waste biomass by stepwise activation for toluene removal from air,” J. Environ. Chem. Eng., vol. 9, no. 4, p. 105387, Aug. 2021, doi: 10.1016/j.jece.2021.105387.
  • [2] X. Zhao, X. Zeng, Y. Qin, X. Li, T. Zhu, and X. Tang, “An experimental and theoretical study of the adsorption removal of toluene and chlorobenzene on coconut shell derived carbon,” Chemosphere, vol. 206, pp. 285–292, Sep. 2018, doi: 10.1016/j.chemosphere.2018.04.126.
  • [3] J. Jjagwe, P. W. Olupot, E. Menya, and H. M. Kalibbala, “Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review,” J. Bioresour. Bioprod., vol. 6, no. 4, pp. 292–322, Nov. 2021, doi: 10.1016/j.jobab.2021.03.003.
  • [4] J. Yang and K. Qiu, “Experimental Design To Optimize the Preparation of Activated Carbons from Herb Residues by Vacuum and Traditional ZnCl 2 Chemical Activation,” Ind. Eng. Chem. Res., vol. 50, no. 7, pp. 4057–4064, Apr. 2011, doi: 10.1021/ie101531p.
  • [5] V. Thakur, E. Sharma, A. Guleria, S. Sangar, and K. Singh, “Modification and management of lignocellulosic waste as an ecofriendly biosorbent for the application of heavy metal ions sorption,” Mater. Today Proc., vol. 32, pp. 608–619, 2020, doi: 10.1016/j.matpr.2020.02.756.
  • [6] E. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D. O. Sulistiono, and D. Prasetyoko, “Review on recent advances of carbon based adsorbent for methylene blue removal from waste water,” Mater. Today Chem., vol. 16, p. 100233, Jun. 2020, doi: 10.1016/j.mtchem.2019.100233.
  • [7] A. O. Abo El Naga, M. El Saied, S. A. Shaban, and F. Y. El Kady, “Fast removal of diclofenac sodium from aqueous solution using sugar cane bagasse-derived activated carbon,” J. Mol. Liq., vol. 285, pp. 9–19, Jul. 2019, doi: 10.1016/j.molliq.2019.04.062.
  • [8] C.-S. Chou, S.-H. Lin, and W.-C. Lu, “Preparation and characterization of solid biomass fuel made from rice straw and rice bran,” Fuel Process. Technol., vol. 90, no. 7–8, pp. 980–987, Jul. 2009, doi: 10.1016/j.fuproc.2009.04.012.
  • [9] T. M. Huggins, A. Haeger, J. C. Biffinger, and Z. J. Ren, “Granular biochar compared with activated carbon for wastewater treatment and resource recovery,” Water Res., vol. 94, pp. 225–232, May 2016, doi: 10.1016/j.watres.2016.02.059.
  • [10] Q. Yuan et al., “N, S-Codoped Activated Carbon Material with Ultra-High Surface Area for High-Performance Supercapacitors,” Polymers (Basel)., vol. 12, no. 9, p. 1982, Aug. 2020, doi: 10.3390/polym12091982.
  • [11] FAO, “Crops and livestock products,” 05.01.2022, 2020. https://www.fao.org/faostat/en/#data/QCL/visualize.
  • [12] G.-N. Guo, B.-B. Yang, Q.-M. Zhang, and C. Zhang, “Porous carbon from tobacco stalk for removal of organic dyes from water,” RSC Adv., vol. 9, no. 58, pp. 33848–33852, 2019, doi: 10.1039/C9RA06688H.
  • [13] H. He, N. Zhang, N. Chen, Z. Lei, K. Shimizu, and Z. Zhang, “Efficient phosphate removal from wastewater by MgAl-LDHs modified hydrochar derived from tobacco stalk,” Bioresour. Technol. Reports, vol. 8, p. 100348, Dec. 2019, doi: 10.1016/j.biteb.2019.100348.
  • [14] N. Esfandiary, S. Bagheri, and A. Heydari, “Magnetic γ-Fe2O3@Cu-LDH intercalated with Palladium Cysteine: An efficient dual nano catalyst in tandem C N coupling and cyclization progress of synthesis quinolines,” Appl. Clay Sci., vol. 198, p. 105841, Nov. 2020, doi: 10.1016/j.clay.2020.105841.
  • [15] K. Sophanodorn, Y. Unpaprom, K. Whangchai, N. Homdoung, N. Dussadee, and R. Ramaraj, “Environmental management and valorization of cultivated tobacco stalks by combined pretreatment for potential bioethanol production,” Biomass Convers. Biorefinery, Sep. 2020, doi: 10.1007/s13399-020-00992-8.
  • [16] P. S. Thue et al., “Effects of first-row transition metals and impregnation ratios on the physicochemical properties of microwave-assisted activated carbons from wood biomass,” J. Colloid Interface Sci., vol. 486, pp. 163–175, Jan. 2017, doi: 10.1016/j.jcis.2016.09.070.
  • [17] S. Salem, Z. Teimouri, and A. Salem, “Fabrication of magnetic activated carbon by carbothermal functionalization of agriculture waste via microwave-assisted technique for cationic dye adsorption,” Adv. Powder Technol., vol. 31, no. 10, pp. 4301–4309, Oct. 2020, doi: 10.1016/j.apt.2020.09.007.
  • [18] O. Baytar, Ö. Şahin, C. Saka, and S. Ağrak, “Characterization of Microwave and Conventional Heating on the Pyrolysis of Pistachio Shells for the Adsorption of Methylene Blue and Iodine,” Anal. Lett., vol. 51, no. 14, pp. 2205–2220, Sep. 2018, doi: 10.1080/00032719.2017.1415920.
  • [19] R. K. Liew et al., “Microwave pyrolysis with KOH/NaOH mixture activation: A new approach to produce micro-mesoporous activated carbon for textile dye adsorption,” Bioresour. Technol., vol. 266, pp. 1–10, Oct. 2018, doi: 10.1016/j.biortech.2018.06.051.
  • [20] R. Hoseinzadeh Hesas, W. M. A. Wan Daud, J. N. Sahu, and A. Arami-Niya, “The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review,” J. Anal. Appl. Pyrolysis, vol. 100, pp. 1–11, Mar. 2013, doi: 10.1016/j.jaap.2012.12.019.
  • [21] Y. M. Sharif, C. Saka, O. Baytar, and Ö. Şahin, “Preparation and Characterization of Activated Carbon from Sesame Seed Shells by Microwave and Conventional Heating with Zinc Chloride Activation,” Anal. Lett., vol. 51, no. 17, pp. 2733–2746, Nov. 2018, doi: 10.1080/00032719.2018.1450415.
  • [22] K. Y. Foo and B. H. Hameed, “Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating,” Bioresour. Technol., vol. 111, pp. 425–432, May 2012, doi: 10.1016/j.biortech.2012.01.141.
  • [23] M. S. İzgi, C. Saka, O. Baytar, G. Saraçoğlu, and Ö. Şahin, “Preparation and Characterization of Activated Carbon from Microwave and Conventional Heated Almond Shells Using Phosphoric Acid Activation,” Anal. Lett., vol. 52, no. 5, pp. 772–789, Mar. 2019, doi: 10.1080/00032719.2018.1495223.
  • [24] D. Prahas, Y. Kartika, N. Indraswati, and S. Ismadji, “Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization,” Chem. Eng. J., vol. 140, no. 1–3, pp. 32–42, Jul. 2008, doi: 10.1016/j.cej.2007.08.032.
  • [25] J. Xu, L. Chen, H. Qu, Y. Jiao, J. Xie, and G. Xing, “Preparation and characterization of activated carbon from reedy grass leaves by chemical activation with H 3 PO 4,” Appl. Surf. Sci., vol. 320, pp. 674–680, Nov. 2014, doi: 10.1016/j.apsusc.2014.08.178.
  • [26] M. K. B. Gratuito, T. Panyathanmaporn, R.-A. Chumnanklang, N. Sirinuntawittaya, and A. Dutta, “Production of activated carbon from coconut shell: Optimization using response surface methodology,” Bioresour. Technol., vol. 99, no. 11, pp. 4887–4895, Jul. 2008, doi: 10.1016/j.biortech.2007.09.042.
  • [27] F. Kaouah, S. Boumaza, T. Berrama, M. Trari, and Z. Bendjama, “Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46,” J. Clean. Prod., vol. 54, pp. 296–306, Sep. 2013, doi: 10.1016/j.jclepro.2013.04.038.
  • [28] L. K. G. Bhatta, K. Venkatesh, K. N, S. K. Gundanna, and U. M. Bhatta, “Synthesis and characterization of activated carbon from Delonix regia seeds for CO2 adsorption,” Energy Clim. Chang., vol. 2, p. 100064, Dec. 2021, doi: 10.1016/j.egycc.2021.100064.
  • [29] F. Kaouah, S. Boumaza, T. Berrama, M. Trari, and Z. Bendjama, “Preparation and characterization of activated carbon from wild olive cores (oleaster) by H3PO4 for the removal of Basic Red 46,” J. Clean. Prod., vol. 54, pp. 296–306, Sep. 2013, doi: 10.1016/j.jclepro.2013.04.038.
  • [30] J. Mohammed, N. S. Nasri, M. A. Ahmad Zaini, U. D. Hamza, and F. N. Ani, “Adsorption of benzene and toluene onto KOH activated coconut shell based carbon treated with NH 3,” Int. Biodeterior. Biodegradation, vol. 102, pp. 245–255, Aug. 2015, doi: 10.1016/j.ibiod.2015.02.012.
  • [31] J. Liu et al., “Characterization and utilization of industrial microbial waste as novel adsorbent to remove single and mixed dyes from water,” J. Clean. Prod., vol. 208, pp. 552–562, Jan. 2019, doi: 10.1016/j.jclepro.2018.10.136.
  • [32] M. Al Bahri, L. Calvo, M. A. Gilarranz, and J. J. Rodriguez, “Activated carbon from grape seeds upon chemical activation with phosphoric acid: Application to the adsorption of diuron from water,” Chem. Eng. J., vol. 203, pp. 348–356, Sep. 2012, doi: 10.1016/j.cej.2012.07.053.
  • [33] A. Stavrinou, C. A. Aggelopoulos, and C. D. Tsakiroglou, “Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: Adsorption kinetics and equilibrium isotherms as a tool,” J. Environ. Chem. Eng., vol. 6, no. 6, pp. 6958–6970, Dec. 2018, doi: 10.1016/j.jece.2018.10.063.
  • [34] N. Sebeia, M. Jabli, A. Ghith, Y. El Ghoul, and F. M. Alminderej, “Populus tremula, Nerium oleander and Pergularia tomentosa seed fibers as sources of cellulose and lignin for the bio-sorption of methylene blue,” Int. J. Biol. Macromol., vol. 121, pp. 655–665, Jan. 2019, doi: 10.1016/j.ijbiomac.2018.10.070.
  • [35] S. G. Nasab, A. Semnani, A. Teimouri, M. J. Yazd, T. M. Isfahani, and S. Habibollahi, “Decolorization of crystal violet from aqueous solutions by a novel adsorbent chitosan/nanodiopside using response surface methodology and artificial neural network-genetic algorithm,” Int. J. Biol. Macromol., vol. 124, pp. 429–443, Mar. 2019, doi: 10.1016/j.ijbiomac.2018.11.148.
  • [36] A. Valencia et al., “Cyclohexane and benzene separation by fixed-bed adsorption on activated carbons prepared from coconut shell,” Environ. Technol. Innov., vol. 25, p. 102076, Feb. 2022, doi: 10.1016/j.eti.2021.102076.
  • [37] W.-X. Zhang, L. Lai, P. Mei, Y. Li, Y.-H. Li, and Y. Liu, “Enhanced removal efficiency of acid red 18 from aqueous solution using wheat bran modified by multiple quaternary ammonium salts,” Chem. Phys. Lett., vol. 710, pp. 193–201, Oct. 2018, doi: 10.1016/j.cplett.2018.09.009.
  • [38] T. A. Saleh and I. Ali, “Synthesis of polyamide grafted carbon microspheres for removal of rhodamine B dye and heavy metals,” J. Environ. Chem. Eng., vol. 6, no. 4, pp. 5361–5368, Aug. 2018, doi: 10.1016/j.jece.2018.08.033.
  • [39] S. Roy and J.-W. Rhim, “Melanin-Mediated Synthesis of Copper Oxide Nanoparticles and Preparation of Functional Agar/CuO NP Nanocomposite Films,” J. Nanomater., vol. 2019, pp. 1–10, Feb. 2019, doi: 10.1155/2019/2840517.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Hakan Yıldız 0000-0002-2181-7226

Hakki Gülşen 0000-0002-0726-555X

Ömer Şahin 0000-0003-4575-3762

Orhan Baytar 0000-0002-2915-202X

Sinan Kutluay 0000-0001-9493-918X

Project Number 21181
Publication Date April 29, 2022
Submission Date February 19, 2022
Acceptance Date April 22, 2022
Published in Issue Year 2022

Cite

APA Yıldız, H., Gülşen, H., Şahin, Ö., Baytar, O., et al. (2022). Atık biyokütleden (Tütün Sapı) Mikrodalga Destekli İmpregnasyon Yöntemi ile Aktif Karbon Sentezi ve Karakterizasyonu. Harran Üniversitesi Mühendislik Dergisi, 7(1), 1-14. https://doi.org/10.46578/humder.1076166