Research Article
BibTex RIS Cite

The Effect of Perfluoropolyether (PFPE)-Based Polyesters on Enhancing Water and Oil Repellency of Nylon Films

Year 2025, Volume: 10 Issue: 3, 213 - 227, 30.09.2025
https://doi.org/10.46578/humder.1717177

Abstract

This study aims to improve the water and oil repellent properties of Nylon film surfaces by employing perfluoropolyether (PFPE)-based polyesters as additives. In this work, PFPE-based polyesters were synthesized with different end-groups (–OH/ C4F9–PFPE and C4F9–PFPE / C4F9–PFPE). The synthesized polyesters were blended with a Nylon matrix, and surface coating was performed via a dip coating method, after which the films were annealed at 140°C for stabilization. The morphology and wettability of the film surfaces, before and after annealing, were characterized by atomic force microscopy (AFM) and contact angle measurements, respectively. The results demonstrate that the PFPE additives effectively migrated to the Nylon film surface, providing pronounced water and oil repellency. It was found that the wettability of the surface depended on two primary parameters: (i) the chemical structure of terminal groups in PFPE polyesters and (ii) the reorganization of the surface upon annealing. The highest water and oil repellency was achieved with the PFPE polyester bearing C4F9–PFPE chains at both ends. Even at low concentrations (5 w/w%), this oligomeric polyester, when incorporated into the Nylon matrix, exhibits low surface energy and oleophobicity comparable to polytetrafluoroethylene (PTFE). These findings suggest that PFPE-based polyesters can serve as an effective and sustainable alternative to environmentally harmful long-chain perfluoroalkyl compounds.

References

  • Bongiovanni, R., Nettis, E., Vitale, A. (2020). Chapter 8 - Fluoropolymers for oil/water membrane separation. In Opportunities for Fluoropolymers, Ameduri, B., Fomin, S., Eds. Elsevier (pp 209-246).
  • Wang, Y., You, C., Kowall, C., Li, L.. (2018). A Nanometer-Thick, Mechanically Robust, and Easy-to-Fabricate Simultaneously Oleophobic/Hydrophilic Polymer Coating for Oil–Water Separation. Industrial & Engineering Chemistry Research, 57 (45), 15395-15399.
  • Vilčnik, A., Jerman, I., Šurca Vuk, A., Koželj, M., Orel, B., Tomšič, B., Simončič, B., Kovač, J. (2009). Structural Properties and Antibacterial Effects of Hydrophobic and Oleophobic Sol−Gel Coatings for Cotton Fabrics. Langmuir, 25 (10), 5869-5880.
  • Xiong, D., Liu, G., Duncan, E. J. S. (2012). Diblock-Copolymer-Coated Water- and Oil-Repellent Cotton Fabrics. Langmuir, 28 (17), 6911-6918.
  • Li, X., Li, Y., Guan, T., Xu, F., Sun, J.(2018). Durable, Highly Electrically Conductive Cotton Fabrics with Healable Superamphiphobicity. ACS Applied Materials & Interfaces, 10 (14), 12042-12050.
  • Erbil, H. Y. (2020). Industrial applications of superhydrophobic coatings: Challenges and prospects. Hacettepe Journal of Biology and Chemistry, 48 (5), 447-457.
  • Falde, E. J., Yohe, S. T., Colson, Y. L., Grinstaff, M. W. (2016) Superhydrophobic materials for biomedical applications. Biomaterials,104, 87-103.
  • Lv, J., Cheng, Y. (2021). Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chemical Society Reviews, 50 (9), 5435-5467.
  • Collins, C. M., Safiuddin, M. (2022) Lotus-Leaf-Inspired Biomimetic Coatings: Different Types, Key Properties, and Applications in Infrastructures. Infrastructures, 7 (4), 46.
  • Han, Z., Fu, J., Wang, Z., Wang, Y., Li, B., Mu, Z., Zhang, J., Niu, S. (2017) Long-term durability of superhydrophobic properties of butterfly wing scales after continuous contact with water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 518, 139-144.
  • An, B., Xu, M., Sun, W., Ma, C., Luo, S., Li, J., Liu, S., Li, W. (2024). Butterfly wing-inspired superhydrophobic photonic cellulose nanocrystal films for vapor sensors and asymmetric actuators. Carbohydrate Polymers, 345, 122595.
  • Liu, K., Du, J., Wu, J., Jiang, L. (2012). Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials. Nanoscale, 4 (3), 768-772.
  • Toselli, M., Messori, M., Bongiovanni, R., Malucelli, G., Priola, A., Pilati, F., Tonelli, C.(2001). Poly(ϵ-caprolactone)-poly(fluoroalkylene oxide)-poly(ϵ-caprolactone) blockcopolymers. 2. Thermal and surface properties. Polymer, 42 (5), 1771-1779.
  • Hare, E. F., Shafrin, E. G., Zisman, W. A. (1954) Properties of Films of Adsorbed Fluorinated Acids. The Journal of Physical Chemistry, 58 (3), 236-239.
  • Kazaryan, P. S., Tyutyunov, A. A., Kondratenko, M. S., Elmanovich, I. V., Stakhanov, A. I., Zefirov, V. V., Gallyamov, M. O., Blagodatskikh, I. V., Khokhlov, A. R. (2019) Superhydrophobic coatings on textiles based on novel poly(perfluoro-tert-hexylbutyl methacrylate-co-hydroxyethyl methacrylate) copolymer deposited from solutions in supercritical carbon dioxide. The Journal of Supercritical Fluids,149, 34-41.
  • Lv, J., Kong, X., Zhu, C., Zhang, J., Feng, J. (2020). Robust, infrared-reflective, superhydrophobic and breathable coatings on polyester fabrics. Progress in Organic Coatings, 147, 105786.
  • Taibi, J., Rouif, S., Ameduri, B., Sonnier, R., Otazaghine, B., (2023). Radiation induced graft polymerization of fluorinated monomers onto flax fabrics for the control of hydrophobic and oleophobic properties. Polymer, 281, 126132.
  • Xia, W., Zhang, Z. (2018). PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectrics, 1 (1), 17-31.
  • Adarraga, O., Vaquero, C., Bilbao, L., Maudes, J., Pérez-Márquez, A., Villaverde, H., Bustero, I., Santamaría, I., Pervier, M.-L. (2023). Anti-icing solutions combining printed electronics and nanotexturing of Al alloys. Materials Today: Proceedings, 93, 24-30.
  • Park, S., Jung, S., Heo, J., Hong, J. (2019). Facile synthesis of polysilsesquioxane toward durable superhydrophilic/superhydrophobic coatings for medical devices. Journal of Industrial and Engineering Chemistry, 77, 97-104.
  • Usman, A., Zhang, C., Zhao, J., Peng, H., Kurniawan, N. D., Fu, C., Hill, D. J. T., Whittaker, A. K. (2021). Tuning the thermoresponsive properties of PEG-based fluorinated polymers and stimuli responsive drug release for switchable 19F magnetic resonance imaging. Polymer Chemistry, 12 (38), 5438-5448.
  • Ning, W., Yang, Y., Zhang, D., Pan, R. (2021). Surface modification of sodium bicarbonate ultrafine powder extinguishing agent by environmental friendly fluorinated acrylate copolymers. Polymer Degradation and Stability, 187, 109558.
  • Liang, H., Zhang, Z., Liu, Y., Ye, M., Hu, C., Huang, Y. (2023). Self-healable and transparent PDMS-g-poly(fluorinated acrylate) coating with ultra-low ice adhesion strength for anti-icing applications. Chemical Communications, 59 (22), 3293-3296.
  • Liu, Y., Gao, S., Liu, J., Zhang, Q. (2023). Biomimetic slippery liquid-infused porous surfaces fabricated by porous fluorinated polyurethane films for anti-icing property. Progress in Organic Coatings, 179, 107524.
  • Kim, B., Lee, J., Lee, E., Jeong, K., Seo, J.-H. (2024). One-pot coatable fluorinated polyurethane resin solution for robust superhydrophobic anti-fouling surface. Progress in Organic Coatings, 187, 108097.
  • Nan, A., Radu, T., Filip, X., Kacsó, I., Hădade, N. D., Nekvapil, F., Miclauş, M. (2023). Efficient chemical synthesis of new thermoplastic fluorinated aromatic polyester. Polymer, 283, 126261.
  • Mei, G., Lei, S., Li, Q., Xu, J., Huo, M. (2024). Preparation of fluorinated polyesters by reversible addition–fragmentation chain transfer step-growth polymerization. Polymer Chemistr, 15 (12), 1234-1243.
  • Lee, Y., Cha, S. H., Kim, Y.-W., Choi, D., Sun, J.-Y. (2018). Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nature Communications, 9 (1), 1804.
  • Askin, S., Kizil, S., Bulbul Sonmez, H. (2021). Creating of highly hydrophobic sorbent with fluoroalkyl silane cross-linker for efficient oil-water separation. Reactive and Functional Polymers, 167, 105002.
  • Basak, S., Barma, S., Majumdar, S., Ghosh, S. (2022). Role of silane grafting in the development of a superhydrophobic clay-alumina composite membrane for separation of water in oil emulsion. Ceramics International, 48 (18), 26638-26650.
  • Ajeya, K. V., Dhanabalan, K., Thong, P. T., Kim, S.-C., Park, S.-C., Son, W.-K., Jung, H.-Y. (2024). Short-side-chain perfluorosulfonic acid incorporated with functionalized silane-based hybrid membrane for the application of energy devices. International Journal of Hydrogen Energy, 55, 432-440.
  • Ellis, D. A., Mabury, S. A., Martin, J. W., Muir, D. C. (2001). Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment. Nature, 412 (6844), 321.
  • Spyrakis, F.ve Dragani, T. A. (2023) The EU's Per- and Polyfluoroalkyl Substances (PFAS) Ban: A Case of Policy over Science. Toxics, 11 (9).
  • Dichiarante, V., Martinez Espinoza, M. I., Gazzera, L., Vuckovac, M., Latikka, M., Cavallo, G., Raffaini, G., Oropesa-Nuñez, R., Canale, C., Dante, S., Marras, S., Carzino, R., Prato, M., Ras, R. H. A., Metrangolo, P. (2018). A Short-Chain Multibranched Perfluoroalkyl Thiol for More Sustainable Hydrophobic Coatings. ACS Sustainable Chemistry & Engineering, 6 (8), 9734-9743.
  • Qiu, X., Li, J., Wang, J., Yang, X., Li, Y., Qi, D. (2022). A robust superhydrophobic and oleophobic coating with short chain perfluoroalkyl group and flower-shaped SiO2 nanoparticles. Surface and Coatings Technology, 447, 128810.
  • Divandari, M., Arcifa, A., Ayer, M. A., Letondor, C., Spencer, N. D. (2021). Applying an Oleophobic/Hydrophobic Fluorinated Polymer Monolayer Coating from Aqueous Solutions. Langmuir, 37 (14), 4387-4394.
  • Huang, L., Song, J., Lu, Y., Chen, F., Liu, X., Jin, Z., Zhao, D., Carmalt, C. J., Parkin, I. P. (2017). Superoleophobic surfaces on stainless steel substrates obtained by chemical bath deposition. Micro & Nano Letters, 12 (2), 76-81.
  • Land, M., de Wit, C. A., Bignert, A., Cousins, I. T., Herzke, D., Johansson, J. H., Martin, J. W. (2018). What is the effect of phasing out long-chain per- and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review. Environmental Evidenc, 7 (1), 4.
  • Dong, Q., Fu, Y., Wang, H., Bai, R., Bai, W. (2020). Synthesis and Characterization of High-Performance Polymers Based on Perfluoropolyalkyl Ethers Using an Environmentally Friendly Solvent. Langmuir, 36 (42), 12513-12520.
  • Bonneaud, C., Howell, J., Bongiovanni, R., Joly-Duhamel, C., Friesen, C. M. (2021). Diversity of Synthetic Approaches to Functionalized Perfluoropolyalkylether Polymers. Macromolecules, 54 (2), 521-550.
  • Messori, M., Fabbri, P., Pilati, F., Tonelli, C., Toselli, M. (2011). Perfluoropolyether-based organic–inorganic coatings. Progress in Organic Coating, 72 (3), 461-468.
  • Wei, L., Demir, T., Grant, A., Tsukruk, V., Brown, P. J., Luzinov, I. (2018). Attainment of Water and Oil Repellency for Engineering Thermoplastics without Long-Chain Perfluoroalkyls: Perfluoropolyether-Based Triblock Polyester Additives. Langmuir, 34 (43), 12934-12946.
  • Trusiano, G., Rizzello, M., Vitale, A., Burgess, J., Friesen, C. M., Joly-Duhamel, C., Bongiovanni, R. (2019). Modification of photocurable epoxides by new perfluoropolyalkylether alcohols for obtaining self-cleaning coatings. Progress in Organic Coatings, 132, 257-263.
  • Demir Caliskan, T., Wei, L., Luzinov, I. (2021). Perfluoropolyether-based oleophobic additives: Influence of molecular weight distribution on wettability of polyethylene terephthalate films. Journal of Fluorine Chemistry, 244, 109747.
  • Wei, L., Wanless, T., Foulger, S. H., Gnilitskyi, I., and Luzinov, I. (2025). Modulation of Polyether Ether Ketone (PEEK) Surfaces via High-Speed Femtosecond Laser Treatment and Perfluoropolyether-Based Polyurethane Coating. ACS Applied Materials & Interfaces
  • Demir, T., Wei, L., Nitta, N., Yushin, G., Brown, P. J. and Luzinov, I. (2017). Toward a Long-Chain Perfluoroalkyl Replacement: Water and Oil Repellency of Polyethylene Terephthalate (PET) Films Modified with Perfluoropolyether-Based Polyesters. ACS Applied Materials & Interfaces, 9 (28), 24318–24330.
  • Caliskan, T.D., Luzinov, I. (2020). Effect of number of –CF3 groups in tails of polyester on surface wettability of coatings: synthesis and characterization of PFPE based polyesters with three -CF3 groups in tails. J Polym Res, 27 (128). Caliskan, T.D. (2025). Impact of Fluorinated Segment Chemistry on Film Wettability: Comparative Study of Short-Chain Perfluoroalkyl and Perfluoropolyether Structures. Polym Eng Sci.
  • Ellison, A. H. ve Zisman, W. A. (1954). Wettability Studies on Naylon, Polyethylene Terephthalate and Polystyrene. The Journal of Physical Chemistry, 58 (6), 503-506.
  • Dong, L., Shi, M., Xu, S., Sun, Q., Pan, G., Yao, L., Zhu, C. (2020). Surface construction of fluorinated TiO2 nanotube networks to develop UV-resistant superhydrophobic aramid fabric. RSC Advances, 10 (38), 22578-22585.
  • Yan, Z., Liu, Y., Wang, W., Wang, D. (2022). Functionalized Naylon 6 Fabric as an Efficient and Recyclable Catalyst for Knoevenagel Condensation. ACS Omega, 7 (37), 33186-33191.
  • Manouras, E., Ioannou, D., Zeniou, A., Sapalidis, A., Gogolides, E. (2024). Superhydrophobic and oleophobic Naylon, PES and PVDF membranes using plasma nanotexturing: Empowering membrane distillation and contributing to PFAS free hydrophobic membranes. Micro and Nano Engineering, 24, 100269.
  • Arooj, N., Mumtaz, M., Rehman, A., Ahmad, I., Khan, S., Shah, A., ul Hassan, M., Raffi, M. (2023). Optimizing electromagnetic interference shielding of carbon nanofibers reinforced Naylon 6, 6 nanocomposite films in terahertz range. Journal of Applied Polymer Science, 140 (18), 53790.
  • Papadopoulou, E. L., Pignatelli, F., Marras, S., Marini, L., Davis, A., Athanassiou, A., Bayer, I. S. (2016). Naylon 6,6/graphene nanoplatelet composite films obtained from a new solvent. RSC Advances, 6 (8), 6823-6831.
  • Lee, H. J., Owens, J. R. (2010). Design of superhydrophobic ultraoleophobic NyCo. Journal of Materials Science, 45 (12), 3247-3253.
  • McLaren, R. L., da Costa, R. C., Booth, A. C., Morgan, D. J., Laycock, C. J., Warwick, M. E. A., Owen, G. R. (2023). Oleophobic coated composite materials based on multi-layer graphitic scaffolding: applications within aircraft propellant tanks and oil-spill clean-up. Molecular Systems Design & Engineering, 8 (4), 473-487.
  • Hayn, R. A., Owens, J. R., Boyer, S. A., McDonald, R. S., Lee, H. J. (2011). Preparation of highly hydrophobic and oleophobic textile surfaces using microwave-promoted silane coupling. Journal of Materials Science, 46 (8), 2503-2509.
  • Mohseni, M., Lahiri, S. K., Nadaraja, A. V., Sundararaj, U., Golovin, K. (2023). Durable and comfortable superoleophobic fabrics utilizing ultra-short-chain fluorinated surface chemistry. Chemical Engineering Journal, 471, 144726.
  • Fabbri, P., Messori, M., Pilati, F., Taurino, R., Tonelli, C., Toselli, M. (2007). Hydrophobic and oleophobic coatings based on perfluoropolyether/silica hybrids by the sol-gel method. Advances in Polymer Technology, 26 (3), 182-190.
  • Odian, G., Step Polymerization. In Principles of Polymerization, 2004; pp 39-197.
  • Tomita, K., ve Ida, H. (1975). Studies on the formation of poly(ethylene terephthalate): 3. Catalytic activity of metal compounds in transesterification of dimethyl terephthalate with ethylene glycol. Polymer, 16 (3), 185-190.
  • Painter, P. C. ve Coleman, M. M. (2009). Essentials of Polymer Science and Engineering. DEStech Publications, Incorporated.
  • Wu, J., Zhou, X., Harris, F. W. (2014). Bis(perfluoro-2-n-propoxyethyl)diacyl peroxide initiated homopolymerization of vinylidene fluoride (VDF) and copolymerization with perfluoro-n-propylvinylether (PPVE). Polymer, 55 (16), 3557-3563.
  • Turri, S., Barchiesi, E., Levi, M. (1995). NMR of perfluoropolyether diols and their acetal copolymers. Macromolecucles, 28 (21), 7271-7275.
  • Karis, T. E., Marchon, B., Hopper, D. A., Siemens, R. L. (2002). Perfluoropolyether characterization by nuclear magnetic resonance spectroscopy and gel permeation chromatography. Journal of Fluorine Chemistry, 118 (1), 81-94.
  • Pilati, F., Bonora, V., Manaresi, P., Munari, A., Toselli, M., Re, A., De Giorgi, M. (1989). Preparation of poly(ethylene terephthalate) in the presence of a telechelic perfluoropolyether. Journal of Polymer Science Part A: Polymer Chemistry, 27 (3), 951-962.
  • Karayannidis, G. P., Sideridou, I. D., Zamboulis, D. N., Bikiaris, D. N., Sakalis, A. J. (2000). Thermal behavior and tensile properties of poly(ethylene terephthalate-co-ethylene isophthalate). Journal of Applied Polymer Science, 78 (1), 200-207.
  • Zhu, L., Li, J., Li, H., Liu, B., Chen, J., Jiang, S. (2023). Effects of end groups and entaglements on crystallization and melting behaviors of poly(ɛ-caprolactone)
  • Owens, D. K. ve Wendt, R. C. (1969). Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 13 (8), 1741-1747

Perfloropolieter (PFPE) Temelli Polyesterlerin Nylon Filmlerinde Su ve Yağ İticiliğini Arttırmadaki Etkisi

Year 2025, Volume: 10 Issue: 3, 213 - 227, 30.09.2025
https://doi.org/10.46578/humder.1717177

Abstract

Bu çalışmada, perfloropolieter (PFPE) temelli polyesterlerin katkı malzemesi olarak kullanmasıyla, Nylon film yüzeylerinin su ve yağ itici yüzey özelliklerinin iyileştirilmesi amaçlanmıştır. PFPE temelli polyesterler, farklı uç gruplara sahip olacak şekilde sentezlenmiştir (–OH/C4F9–PFPE ve C4F9–PFPE /C4F9–PFPE). Sentezlenen bu polyesterler, Nylon matrisi ile karıştırılarak çözeltiye daldırma yöntemiyle yüzey kaplama işlemi uygulanmış, ardından Nylon/PFPE filmleri 140 °C’de tavlanarak stabilize edilmiştir. Tavlama öncesi ve sonrası film yüzeylerinin morfolojisi ve ıslanabilirlik özellikleri atomik kuvvet mikroskobu (AFM) ve temas açısı ölçümleri ile karakterize edilmiştir. Sonuçlar, PFPE katkılarının Nylon film yüzeyine etkin şekilde göç ettiğini ve yüzeyde belirgin düzeyde su ve yağ iticiliği sağladığını göstermektedir. Yüzeyin ıslanabilirlik özelliklerinin başlıca iki parametreye bağlı olduğu belirlenmiştir: (i) PFPE polyesterlerinin uç gruplarının kimyasal yapısı ve (ii) tavlama sonrası yüzeyin yeniden dengelenmesi. En yüksek su ve yağ itici özellik, her iki ucunda C4F9–PFPE zinciri taşıyan polyester ile elde edilmiştir. Nylon matrise dahil edilen bu polyesterler, politetrafloroetilen (PTFE) ile kıyaslanabilir seviyede düşük yüzey enerjisi ve yağ geçirmezlik sunmaktadır. Elde edilen bulgular, PFPE temelli oligomerik polyesterlerin, çevreye zararlı uzun zincirli perfloroalkil bileşiklere karşı etkin ve sürdürülebilir bir alternatif oluşturabileceğini ortaya koymaktadır.

Thanks

Makalenin hazırlanmasında yardımını esirgemeyen sayın Prof. Dr. Igor LUZINOV’ a teşekkür ederim.

References

  • Bongiovanni, R., Nettis, E., Vitale, A. (2020). Chapter 8 - Fluoropolymers for oil/water membrane separation. In Opportunities for Fluoropolymers, Ameduri, B., Fomin, S., Eds. Elsevier (pp 209-246).
  • Wang, Y., You, C., Kowall, C., Li, L.. (2018). A Nanometer-Thick, Mechanically Robust, and Easy-to-Fabricate Simultaneously Oleophobic/Hydrophilic Polymer Coating for Oil–Water Separation. Industrial & Engineering Chemistry Research, 57 (45), 15395-15399.
  • Vilčnik, A., Jerman, I., Šurca Vuk, A., Koželj, M., Orel, B., Tomšič, B., Simončič, B., Kovač, J. (2009). Structural Properties and Antibacterial Effects of Hydrophobic and Oleophobic Sol−Gel Coatings for Cotton Fabrics. Langmuir, 25 (10), 5869-5880.
  • Xiong, D., Liu, G., Duncan, E. J. S. (2012). Diblock-Copolymer-Coated Water- and Oil-Repellent Cotton Fabrics. Langmuir, 28 (17), 6911-6918.
  • Li, X., Li, Y., Guan, T., Xu, F., Sun, J.(2018). Durable, Highly Electrically Conductive Cotton Fabrics with Healable Superamphiphobicity. ACS Applied Materials & Interfaces, 10 (14), 12042-12050.
  • Erbil, H. Y. (2020). Industrial applications of superhydrophobic coatings: Challenges and prospects. Hacettepe Journal of Biology and Chemistry, 48 (5), 447-457.
  • Falde, E. J., Yohe, S. T., Colson, Y. L., Grinstaff, M. W. (2016) Superhydrophobic materials for biomedical applications. Biomaterials,104, 87-103.
  • Lv, J., Cheng, Y. (2021). Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chemical Society Reviews, 50 (9), 5435-5467.
  • Collins, C. M., Safiuddin, M. (2022) Lotus-Leaf-Inspired Biomimetic Coatings: Different Types, Key Properties, and Applications in Infrastructures. Infrastructures, 7 (4), 46.
  • Han, Z., Fu, J., Wang, Z., Wang, Y., Li, B., Mu, Z., Zhang, J., Niu, S. (2017) Long-term durability of superhydrophobic properties of butterfly wing scales after continuous contact with water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 518, 139-144.
  • An, B., Xu, M., Sun, W., Ma, C., Luo, S., Li, J., Liu, S., Li, W. (2024). Butterfly wing-inspired superhydrophobic photonic cellulose nanocrystal films for vapor sensors and asymmetric actuators. Carbohydrate Polymers, 345, 122595.
  • Liu, K., Du, J., Wu, J., Jiang, L. (2012). Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials. Nanoscale, 4 (3), 768-772.
  • Toselli, M., Messori, M., Bongiovanni, R., Malucelli, G., Priola, A., Pilati, F., Tonelli, C.(2001). Poly(ϵ-caprolactone)-poly(fluoroalkylene oxide)-poly(ϵ-caprolactone) blockcopolymers. 2. Thermal and surface properties. Polymer, 42 (5), 1771-1779.
  • Hare, E. F., Shafrin, E. G., Zisman, W. A. (1954) Properties of Films of Adsorbed Fluorinated Acids. The Journal of Physical Chemistry, 58 (3), 236-239.
  • Kazaryan, P. S., Tyutyunov, A. A., Kondratenko, M. S., Elmanovich, I. V., Stakhanov, A. I., Zefirov, V. V., Gallyamov, M. O., Blagodatskikh, I. V., Khokhlov, A. R. (2019) Superhydrophobic coatings on textiles based on novel poly(perfluoro-tert-hexylbutyl methacrylate-co-hydroxyethyl methacrylate) copolymer deposited from solutions in supercritical carbon dioxide. The Journal of Supercritical Fluids,149, 34-41.
  • Lv, J., Kong, X., Zhu, C., Zhang, J., Feng, J. (2020). Robust, infrared-reflective, superhydrophobic and breathable coatings on polyester fabrics. Progress in Organic Coatings, 147, 105786.
  • Taibi, J., Rouif, S., Ameduri, B., Sonnier, R., Otazaghine, B., (2023). Radiation induced graft polymerization of fluorinated monomers onto flax fabrics for the control of hydrophobic and oleophobic properties. Polymer, 281, 126132.
  • Xia, W., Zhang, Z. (2018). PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectrics, 1 (1), 17-31.
  • Adarraga, O., Vaquero, C., Bilbao, L., Maudes, J., Pérez-Márquez, A., Villaverde, H., Bustero, I., Santamaría, I., Pervier, M.-L. (2023). Anti-icing solutions combining printed electronics and nanotexturing of Al alloys. Materials Today: Proceedings, 93, 24-30.
  • Park, S., Jung, S., Heo, J., Hong, J. (2019). Facile synthesis of polysilsesquioxane toward durable superhydrophilic/superhydrophobic coatings for medical devices. Journal of Industrial and Engineering Chemistry, 77, 97-104.
  • Usman, A., Zhang, C., Zhao, J., Peng, H., Kurniawan, N. D., Fu, C., Hill, D. J. T., Whittaker, A. K. (2021). Tuning the thermoresponsive properties of PEG-based fluorinated polymers and stimuli responsive drug release for switchable 19F magnetic resonance imaging. Polymer Chemistry, 12 (38), 5438-5448.
  • Ning, W., Yang, Y., Zhang, D., Pan, R. (2021). Surface modification of sodium bicarbonate ultrafine powder extinguishing agent by environmental friendly fluorinated acrylate copolymers. Polymer Degradation and Stability, 187, 109558.
  • Liang, H., Zhang, Z., Liu, Y., Ye, M., Hu, C., Huang, Y. (2023). Self-healable and transparent PDMS-g-poly(fluorinated acrylate) coating with ultra-low ice adhesion strength for anti-icing applications. Chemical Communications, 59 (22), 3293-3296.
  • Liu, Y., Gao, S., Liu, J., Zhang, Q. (2023). Biomimetic slippery liquid-infused porous surfaces fabricated by porous fluorinated polyurethane films for anti-icing property. Progress in Organic Coatings, 179, 107524.
  • Kim, B., Lee, J., Lee, E., Jeong, K., Seo, J.-H. (2024). One-pot coatable fluorinated polyurethane resin solution for robust superhydrophobic anti-fouling surface. Progress in Organic Coatings, 187, 108097.
  • Nan, A., Radu, T., Filip, X., Kacsó, I., Hădade, N. D., Nekvapil, F., Miclauş, M. (2023). Efficient chemical synthesis of new thermoplastic fluorinated aromatic polyester. Polymer, 283, 126261.
  • Mei, G., Lei, S., Li, Q., Xu, J., Huo, M. (2024). Preparation of fluorinated polyesters by reversible addition–fragmentation chain transfer step-growth polymerization. Polymer Chemistr, 15 (12), 1234-1243.
  • Lee, Y., Cha, S. H., Kim, Y.-W., Choi, D., Sun, J.-Y. (2018). Transparent and attachable ionic communicators based on self-cleanable triboelectric nanogenerators. Nature Communications, 9 (1), 1804.
  • Askin, S., Kizil, S., Bulbul Sonmez, H. (2021). Creating of highly hydrophobic sorbent with fluoroalkyl silane cross-linker for efficient oil-water separation. Reactive and Functional Polymers, 167, 105002.
  • Basak, S., Barma, S., Majumdar, S., Ghosh, S. (2022). Role of silane grafting in the development of a superhydrophobic clay-alumina composite membrane for separation of water in oil emulsion. Ceramics International, 48 (18), 26638-26650.
  • Ajeya, K. V., Dhanabalan, K., Thong, P. T., Kim, S.-C., Park, S.-C., Son, W.-K., Jung, H.-Y. (2024). Short-side-chain perfluorosulfonic acid incorporated with functionalized silane-based hybrid membrane for the application of energy devices. International Journal of Hydrogen Energy, 55, 432-440.
  • Ellis, D. A., Mabury, S. A., Martin, J. W., Muir, D. C. (2001). Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment. Nature, 412 (6844), 321.
  • Spyrakis, F.ve Dragani, T. A. (2023) The EU's Per- and Polyfluoroalkyl Substances (PFAS) Ban: A Case of Policy over Science. Toxics, 11 (9).
  • Dichiarante, V., Martinez Espinoza, M. I., Gazzera, L., Vuckovac, M., Latikka, M., Cavallo, G., Raffaini, G., Oropesa-Nuñez, R., Canale, C., Dante, S., Marras, S., Carzino, R., Prato, M., Ras, R. H. A., Metrangolo, P. (2018). A Short-Chain Multibranched Perfluoroalkyl Thiol for More Sustainable Hydrophobic Coatings. ACS Sustainable Chemistry & Engineering, 6 (8), 9734-9743.
  • Qiu, X., Li, J., Wang, J., Yang, X., Li, Y., Qi, D. (2022). A robust superhydrophobic and oleophobic coating with short chain perfluoroalkyl group and flower-shaped SiO2 nanoparticles. Surface and Coatings Technology, 447, 128810.
  • Divandari, M., Arcifa, A., Ayer, M. A., Letondor, C., Spencer, N. D. (2021). Applying an Oleophobic/Hydrophobic Fluorinated Polymer Monolayer Coating from Aqueous Solutions. Langmuir, 37 (14), 4387-4394.
  • Huang, L., Song, J., Lu, Y., Chen, F., Liu, X., Jin, Z., Zhao, D., Carmalt, C. J., Parkin, I. P. (2017). Superoleophobic surfaces on stainless steel substrates obtained by chemical bath deposition. Micro & Nano Letters, 12 (2), 76-81.
  • Land, M., de Wit, C. A., Bignert, A., Cousins, I. T., Herzke, D., Johansson, J. H., Martin, J. W. (2018). What is the effect of phasing out long-chain per- and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review. Environmental Evidenc, 7 (1), 4.
  • Dong, Q., Fu, Y., Wang, H., Bai, R., Bai, W. (2020). Synthesis and Characterization of High-Performance Polymers Based on Perfluoropolyalkyl Ethers Using an Environmentally Friendly Solvent. Langmuir, 36 (42), 12513-12520.
  • Bonneaud, C., Howell, J., Bongiovanni, R., Joly-Duhamel, C., Friesen, C. M. (2021). Diversity of Synthetic Approaches to Functionalized Perfluoropolyalkylether Polymers. Macromolecules, 54 (2), 521-550.
  • Messori, M., Fabbri, P., Pilati, F., Tonelli, C., Toselli, M. (2011). Perfluoropolyether-based organic–inorganic coatings. Progress in Organic Coating, 72 (3), 461-468.
  • Wei, L., Demir, T., Grant, A., Tsukruk, V., Brown, P. J., Luzinov, I. (2018). Attainment of Water and Oil Repellency for Engineering Thermoplastics without Long-Chain Perfluoroalkyls: Perfluoropolyether-Based Triblock Polyester Additives. Langmuir, 34 (43), 12934-12946.
  • Trusiano, G., Rizzello, M., Vitale, A., Burgess, J., Friesen, C. M., Joly-Duhamel, C., Bongiovanni, R. (2019). Modification of photocurable epoxides by new perfluoropolyalkylether alcohols for obtaining self-cleaning coatings. Progress in Organic Coatings, 132, 257-263.
  • Demir Caliskan, T., Wei, L., Luzinov, I. (2021). Perfluoropolyether-based oleophobic additives: Influence of molecular weight distribution on wettability of polyethylene terephthalate films. Journal of Fluorine Chemistry, 244, 109747.
  • Wei, L., Wanless, T., Foulger, S. H., Gnilitskyi, I., and Luzinov, I. (2025). Modulation of Polyether Ether Ketone (PEEK) Surfaces via High-Speed Femtosecond Laser Treatment and Perfluoropolyether-Based Polyurethane Coating. ACS Applied Materials & Interfaces
  • Demir, T., Wei, L., Nitta, N., Yushin, G., Brown, P. J. and Luzinov, I. (2017). Toward a Long-Chain Perfluoroalkyl Replacement: Water and Oil Repellency of Polyethylene Terephthalate (PET) Films Modified with Perfluoropolyether-Based Polyesters. ACS Applied Materials & Interfaces, 9 (28), 24318–24330.
  • Caliskan, T.D., Luzinov, I. (2020). Effect of number of –CF3 groups in tails of polyester on surface wettability of coatings: synthesis and characterization of PFPE based polyesters with three -CF3 groups in tails. J Polym Res, 27 (128). Caliskan, T.D. (2025). Impact of Fluorinated Segment Chemistry on Film Wettability: Comparative Study of Short-Chain Perfluoroalkyl and Perfluoropolyether Structures. Polym Eng Sci.
  • Ellison, A. H. ve Zisman, W. A. (1954). Wettability Studies on Naylon, Polyethylene Terephthalate and Polystyrene. The Journal of Physical Chemistry, 58 (6), 503-506.
  • Dong, L., Shi, M., Xu, S., Sun, Q., Pan, G., Yao, L., Zhu, C. (2020). Surface construction of fluorinated TiO2 nanotube networks to develop UV-resistant superhydrophobic aramid fabric. RSC Advances, 10 (38), 22578-22585.
  • Yan, Z., Liu, Y., Wang, W., Wang, D. (2022). Functionalized Naylon 6 Fabric as an Efficient and Recyclable Catalyst for Knoevenagel Condensation. ACS Omega, 7 (37), 33186-33191.
  • Manouras, E., Ioannou, D., Zeniou, A., Sapalidis, A., Gogolides, E. (2024). Superhydrophobic and oleophobic Naylon, PES and PVDF membranes using plasma nanotexturing: Empowering membrane distillation and contributing to PFAS free hydrophobic membranes. Micro and Nano Engineering, 24, 100269.
  • Arooj, N., Mumtaz, M., Rehman, A., Ahmad, I., Khan, S., Shah, A., ul Hassan, M., Raffi, M. (2023). Optimizing electromagnetic interference shielding of carbon nanofibers reinforced Naylon 6, 6 nanocomposite films in terahertz range. Journal of Applied Polymer Science, 140 (18), 53790.
  • Papadopoulou, E. L., Pignatelli, F., Marras, S., Marini, L., Davis, A., Athanassiou, A., Bayer, I. S. (2016). Naylon 6,6/graphene nanoplatelet composite films obtained from a new solvent. RSC Advances, 6 (8), 6823-6831.
  • Lee, H. J., Owens, J. R. (2010). Design of superhydrophobic ultraoleophobic NyCo. Journal of Materials Science, 45 (12), 3247-3253.
  • McLaren, R. L., da Costa, R. C., Booth, A. C., Morgan, D. J., Laycock, C. J., Warwick, M. E. A., Owen, G. R. (2023). Oleophobic coated composite materials based on multi-layer graphitic scaffolding: applications within aircraft propellant tanks and oil-spill clean-up. Molecular Systems Design & Engineering, 8 (4), 473-487.
  • Hayn, R. A., Owens, J. R., Boyer, S. A., McDonald, R. S., Lee, H. J. (2011). Preparation of highly hydrophobic and oleophobic textile surfaces using microwave-promoted silane coupling. Journal of Materials Science, 46 (8), 2503-2509.
  • Mohseni, M., Lahiri, S. K., Nadaraja, A. V., Sundararaj, U., Golovin, K. (2023). Durable and comfortable superoleophobic fabrics utilizing ultra-short-chain fluorinated surface chemistry. Chemical Engineering Journal, 471, 144726.
  • Fabbri, P., Messori, M., Pilati, F., Taurino, R., Tonelli, C., Toselli, M. (2007). Hydrophobic and oleophobic coatings based on perfluoropolyether/silica hybrids by the sol-gel method. Advances in Polymer Technology, 26 (3), 182-190.
  • Odian, G., Step Polymerization. In Principles of Polymerization, 2004; pp 39-197.
  • Tomita, K., ve Ida, H. (1975). Studies on the formation of poly(ethylene terephthalate): 3. Catalytic activity of metal compounds in transesterification of dimethyl terephthalate with ethylene glycol. Polymer, 16 (3), 185-190.
  • Painter, P. C. ve Coleman, M. M. (2009). Essentials of Polymer Science and Engineering. DEStech Publications, Incorporated.
  • Wu, J., Zhou, X., Harris, F. W. (2014). Bis(perfluoro-2-n-propoxyethyl)diacyl peroxide initiated homopolymerization of vinylidene fluoride (VDF) and copolymerization with perfluoro-n-propylvinylether (PPVE). Polymer, 55 (16), 3557-3563.
  • Turri, S., Barchiesi, E., Levi, M. (1995). NMR of perfluoropolyether diols and their acetal copolymers. Macromolecucles, 28 (21), 7271-7275.
  • Karis, T. E., Marchon, B., Hopper, D. A., Siemens, R. L. (2002). Perfluoropolyether characterization by nuclear magnetic resonance spectroscopy and gel permeation chromatography. Journal of Fluorine Chemistry, 118 (1), 81-94.
  • Pilati, F., Bonora, V., Manaresi, P., Munari, A., Toselli, M., Re, A., De Giorgi, M. (1989). Preparation of poly(ethylene terephthalate) in the presence of a telechelic perfluoropolyether. Journal of Polymer Science Part A: Polymer Chemistry, 27 (3), 951-962.
  • Karayannidis, G. P., Sideridou, I. D., Zamboulis, D. N., Bikiaris, D. N., Sakalis, A. J. (2000). Thermal behavior and tensile properties of poly(ethylene terephthalate-co-ethylene isophthalate). Journal of Applied Polymer Science, 78 (1), 200-207.
  • Zhu, L., Li, J., Li, H., Liu, B., Chen, J., Jiang, S. (2023). Effects of end groups and entaglements on crystallization and melting behaviors of poly(ɛ-caprolactone)
  • Owens, D. K. ve Wendt, R. C. (1969). Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 13 (8), 1741-1747
There are 68 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering (Other)
Journal Section Articles
Authors

Tugba Demir Çalışkan 0000-0003-2935-0525

Early Pub Date September 29, 2025
Publication Date September 30, 2025
Submission Date June 11, 2025
Acceptance Date August 24, 2025
Published in Issue Year 2025 Volume: 10 Issue: 3

Cite

APA Demir Çalışkan, T. (2025). Perfloropolieter (PFPE) Temelli Polyesterlerin Nylon Filmlerinde Su ve Yağ İticiliğini Arttırmadaki Etkisi. Harran Üniversitesi Mühendislik Dergisi, 10(3), 213-227. https://doi.org/10.46578/humder.1717177