Research Article
BibTex RIS Cite

Multipl Sklerozlu Pediatrik Hastalarda Lezyon Yükünün Bilgisayar Destekli Algoritma ile Değerlendirilmesi ve Standart Tespit Yöntemleriyle Karşılaştırılması

Year 2024, , 159 - 165, 29.08.2024
https://doi.org/10.35440/hutfd.1455339

Abstract

Amaç: Bu retrospektif çalışmanın amacı, bilgisayar destekli bir algoritma olan VolBrain programını kullanarak pediatrik Multiple Skleroz’lu (pMS) hastalarda lezyon yükünü değerlendirmektir. Çalışma, bu otomatik aracın performansını nörogörüntüleme analistleri tarafından gerçekleştirilen geleneksel tespit yöntemleriyle karşılaştırarak pMS'de lezyon ölçümü için otomatik araçların potansiyeline ilişkin önemli bilgiler sunmayı hedeflemiştir.
Materyal ve metod: Çalışma grubu Atatürk Üniversitesi Araştırma Hastanesi'ne kayıtlı 10-18 yaş arası 20 pMS hastasından oluşmuştur. Lezyon değerlendirmesi VolBrain programı (anatomist tarafından) ve standart tespit yöntemleri (bir nöroradyolog tarafından) kullanılarak T2 SPACE dark matter sekansları kullanılarak yapıldı. İstatistiksel analiz Wilcoxon ve Pearson korelasyon testlerini içeriyordu ve çalışma etik hususlara ve standartlaştırılmış manyetik rezonans görüntüleme (MRI) protokollerine bağlı kaldı.
Bulgular: Bu çalışmada 10-18 yaş arası pMS hastalarının %60'ı kız (n=12) ve %40'ı erkeklerden (n=8) oluşmaktadır. Yaş ortalaması kızlarda 15,67±1,969, erkeklerde ise 14,50±2,20 yıldı (p=0,24). Plak sayımı analizi, tüm pMS hastalarında radyolog ve VolBrain değerlendirmesi arasında istatistiksel olarak anlamlı bir fark olduğunu gösterdi (p=0,021). Kız pMS hastalarında da anlamlı farklılıklar gözlenirken (p=0,034), erkeklerde ise bu fark görülmedi (p=0,362). Radyolog ve VolBrain değerlendirmeleri arasındaki korelasyonlar, hem kız hem de erkek hastalarda plak sayısı, lezyon yükü ve Genişletilmiş Engellilik Durum Ölçeği (EDSS) skorları için güçlü korelasyonlar olduğunu göstermiştir (p<0,01).
Sonuç: Bu çalışma, VolBrain programının pMS hastalarında lezyon yükünü değerlendirmedeki potansiyelini ortaya koymaktadır. Geleneksel yöntemler ve klinik parametrelerle gözlemlenen korelasyonlar VolBrain'in eşzamanlı geçerliliğini desteklemekte ve potansiyel klinik uygunluğunu vurgulamaktadır. Otomatik araçların rutin klinik uygulamaya dahil edilmesi, lezyon miktarının doğruluğunu artırabilir ve böylece pMS'nin daha iyi izlenmesine ve yönetimine katkıda bulunabilir.

References

  • 1. Bilek F, Cetisli-Korkmaz N, Ercan Z, Deniz G, Demir CF. Aerobic exercise increases irisin serum levels and improves dep-ression and fatigue in patients with relapsing remitting multiple sclerosis: a randomized controlled trial. Multiple Sclerosis and Related Disorders. 2022;61:103742.
  • 2. Yilmaz DY. Belirsizlik Kuramına Göre Çocukluktan Genç-liğe Multiple Skleroz Hastası Olmak: Olgu Sunumu. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi.10(1):67-70.
  • 3. Hemond CC, Bakshi R. Magnetic resonance imaging in multiple sclerosis. Cold Spring Harbor perspectives in medicine. 2018;8(5):a028969.
  • 4. Prananto L, Anwar K, Febriani RS. Analysis of the Use of Sequence T2 SPACE Dark Fluid in MRI Brain Coronal Slice Exami-nations with Clinical Epilepsy at the National Brain Center Hospi-tal. WMJ (Warmadewa Medical Journal). 2023;8(2).
  • 5. Thorpe J, Kidd D, Moseley I, Thompson A, MacManus D, Compston D, et al. Spinal MRI in patients with suspected multiple sclerosis and negative brain MRI. Brain. 1996;119(3):709-14.
  • 6. Deniz G, Karakurt N, Özcan H, Niyazi A. Comparison of brain volume measurements in methamphetamine use disorder with healthy individuals using volbrain method. Adıyaman Üniver-sitesi Sağlık Bilimleri Dergisi.9(3):188-98.
  • 7. Özmen G, Saygin DA, Uysal İİ, Özşen S, Paksoy Y, Güler Ö. Quantitative evaluation of the cerebellum in patients with depression and healthy adults by VolBrain method. Anatomy. 2021;15(3):207-15.
  • 8. Deniz G, Bilek F, Esmez Ö, Gülkesen A, Gürger M. Does Arthroscopic Rotator Cuff Repair Improve Kinesiophobia, Depres-sion, and Spatiotemporal Parameters in the Long Term? J Clin Pract Res. 2023;45(6):565-74.
  • 9. Mendelsohn Z, Pemberton HG, Gray J, Goodkin O, Car-rasco FP, Scheel M, et al. Commercial volumetric MRI reporting tools in multiple sclerosis: a systematic review of the evidence. Neuroradiology. 2023;65(1):5-24.
  • 10. Alroughani R, Boyko A. Pediatric multiple sclerosis: a review. BMC neurology. 2018;18:1-8.
  • 11. Koc AM, Esen OS, Eskut N, Koskderelioglu A, Dilek I. Comparison of visual and automatic quantitative measurement results on 3D volumetric mri in multiple sclerosis patients. Medi-cine. 2021;10(2):498-501.
  • 12. Van Nederpelt DR, Amiri H, Brouwer I, Noteboom S, Mokkink LB, Barkhof F, et al. Reliability of brain atrophy measu-rements in multiple sclerosis using MRI: an assessment of six freely available software packages for cross-sectional analyses. Neuroradiology. 2023;65(10):1459-72.
  • 13. Khajetash B, Talebi A, Bagherpour Z, Abbaspour S, Tavakoli M. Introducing radiomics model to predict active plaque in multiple sclerosis patients using magnetic resonance images. Biomedical Physics & Engineering Express. 2023;9(5):055004.
  • 14. Lucchinetti CF, Brück W, Rodriguez M, Lassmann H. Distinct patterns of multiple sclerosis pathology indicates hetero-geneity in pathogenesis. Brain pathology. 1996;6(3):259-74.
  • 15. Voskuhl RR. The effect of sex on multiple sclerosis risk and disease progression. Multiple Sclerosis Journal. 2020;26(5):554-60.
  • 16. Calvi A, Carrasco FP, Tur C, Chard DT, Stutters J, De Angelis F, et al. Association of slowly expanding lesions on MRI with disability in people with secondary progressive multiple sclerosis. Neurology. 2022;98(17):e1783-e93.
  • 17. Mowry E, Beheshtian A, Waubant E, Goodin D, Cree B, Qualley P, et al. Quality of life in multiple sclerosis is associated with lesion burden and brain volume measures. Neurology. 2009;72(20):1760-5.
  • 18. Coupé P, Tourdias T, Linck P, Romero JE, Manjón JV, editors. LesionBrain: an online tool for white matter lesion seg-mentation. Patch-Based Techniques in Medical Imaging: 4th International Workshop, Patch-MI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4; 2018: Springer.
  • 19. Yamamoto T, Lacheret C, Fukutomi H, Kamraoui RA, Denat L, Zhang B, et al. Validation of a Denoising Method Using Deep Learning–Based Reconstruction to Quantify Multiple Sclero-sis Lesion Load on Fast FLAIR Imaging. American Journal of Neu-roradiology. 2022;43(8):1099-106.

Evaluation of Lesion Burden in Pediatric Patients with Multiple Sclerosis by Computer Aided Algorithm and Comparison with Standard Detection Methods

Year 2024, , 159 - 165, 29.08.2024
https://doi.org/10.35440/hutfd.1455339

Abstract

Background: The aim of this retrospective study was to assess the lesion burden in pediatric patients with multiple sclerosis (pMS) using a computer-assisted algorithm, specifically the VolBrain program. The study aimed to compare the performance of this automated tool with traditional detection methods performed by neuroimaging analysts, providing valuable insights into the potential of automated tools for lesion quantification in pMS.
Materials and Methods: The study cohort consisted of 20 PMS patients, aged 10-18 years, registered at Atatürk University Research Hospital. Lesion assessment was performed using the VolBrain program (by an anatomist) and standard detection methods (by a neuroradiologist) using T2 SPACE dark matter sequences. Statistical analysis included Wilcoxon and Pearson correlation tests, and the study adhered to ethical considerations and standardised magnetic resonance imaging (MRI) protocols.
Results: In this study, pMS patients aged 10-18 years, the cohort consisted of 60% females (n=12) and 40% males (n=8). The mean age for females was 15.67±1.969 and for males 14.50±2.20 years (p=0.24). Plaque count analysis showed a statistically significant difference between radiologist and VolBrain assessment in all pMS patients (p=0.021). Significant differences were also observed in female pMS patients (p=0.034) but not in males (p=0.362). Correlations between radiologist and VolBrain assessments showed significant associations in both female and male patients, with strong correlations observed for plaque number, lesion burden and Expanded Disability Status Scale (EDSS) scores (p<0.01).
Conclusions: This study demonstrates the potential of the VolBrain programme in assessing lesion burden in pMS patients. The observed correlations with traditional methods and clinical parameters support the concurrent validity of VolBrain and emphasise its potential clinical relevance. Incorporating automated tools into routine clinical practice could improve the accuracy of lesion quantification and thus contribute to improved monitoring and management of pMS.

References

  • 1. Bilek F, Cetisli-Korkmaz N, Ercan Z, Deniz G, Demir CF. Aerobic exercise increases irisin serum levels and improves dep-ression and fatigue in patients with relapsing remitting multiple sclerosis: a randomized controlled trial. Multiple Sclerosis and Related Disorders. 2022;61:103742.
  • 2. Yilmaz DY. Belirsizlik Kuramına Göre Çocukluktan Genç-liğe Multiple Skleroz Hastası Olmak: Olgu Sunumu. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi.10(1):67-70.
  • 3. Hemond CC, Bakshi R. Magnetic resonance imaging in multiple sclerosis. Cold Spring Harbor perspectives in medicine. 2018;8(5):a028969.
  • 4. Prananto L, Anwar K, Febriani RS. Analysis of the Use of Sequence T2 SPACE Dark Fluid in MRI Brain Coronal Slice Exami-nations with Clinical Epilepsy at the National Brain Center Hospi-tal. WMJ (Warmadewa Medical Journal). 2023;8(2).
  • 5. Thorpe J, Kidd D, Moseley I, Thompson A, MacManus D, Compston D, et al. Spinal MRI in patients with suspected multiple sclerosis and negative brain MRI. Brain. 1996;119(3):709-14.
  • 6. Deniz G, Karakurt N, Özcan H, Niyazi A. Comparison of brain volume measurements in methamphetamine use disorder with healthy individuals using volbrain method. Adıyaman Üniver-sitesi Sağlık Bilimleri Dergisi.9(3):188-98.
  • 7. Özmen G, Saygin DA, Uysal İİ, Özşen S, Paksoy Y, Güler Ö. Quantitative evaluation of the cerebellum in patients with depression and healthy adults by VolBrain method. Anatomy. 2021;15(3):207-15.
  • 8. Deniz G, Bilek F, Esmez Ö, Gülkesen A, Gürger M. Does Arthroscopic Rotator Cuff Repair Improve Kinesiophobia, Depres-sion, and Spatiotemporal Parameters in the Long Term? J Clin Pract Res. 2023;45(6):565-74.
  • 9. Mendelsohn Z, Pemberton HG, Gray J, Goodkin O, Car-rasco FP, Scheel M, et al. Commercial volumetric MRI reporting tools in multiple sclerosis: a systematic review of the evidence. Neuroradiology. 2023;65(1):5-24.
  • 10. Alroughani R, Boyko A. Pediatric multiple sclerosis: a review. BMC neurology. 2018;18:1-8.
  • 11. Koc AM, Esen OS, Eskut N, Koskderelioglu A, Dilek I. Comparison of visual and automatic quantitative measurement results on 3D volumetric mri in multiple sclerosis patients. Medi-cine. 2021;10(2):498-501.
  • 12. Van Nederpelt DR, Amiri H, Brouwer I, Noteboom S, Mokkink LB, Barkhof F, et al. Reliability of brain atrophy measu-rements in multiple sclerosis using MRI: an assessment of six freely available software packages for cross-sectional analyses. Neuroradiology. 2023;65(10):1459-72.
  • 13. Khajetash B, Talebi A, Bagherpour Z, Abbaspour S, Tavakoli M. Introducing radiomics model to predict active plaque in multiple sclerosis patients using magnetic resonance images. Biomedical Physics & Engineering Express. 2023;9(5):055004.
  • 14. Lucchinetti CF, Brück W, Rodriguez M, Lassmann H. Distinct patterns of multiple sclerosis pathology indicates hetero-geneity in pathogenesis. Brain pathology. 1996;6(3):259-74.
  • 15. Voskuhl RR. The effect of sex on multiple sclerosis risk and disease progression. Multiple Sclerosis Journal. 2020;26(5):554-60.
  • 16. Calvi A, Carrasco FP, Tur C, Chard DT, Stutters J, De Angelis F, et al. Association of slowly expanding lesions on MRI with disability in people with secondary progressive multiple sclerosis. Neurology. 2022;98(17):e1783-e93.
  • 17. Mowry E, Beheshtian A, Waubant E, Goodin D, Cree B, Qualley P, et al. Quality of life in multiple sclerosis is associated with lesion burden and brain volume measures. Neurology. 2009;72(20):1760-5.
  • 18. Coupé P, Tourdias T, Linck P, Romero JE, Manjón JV, editors. LesionBrain: an online tool for white matter lesion seg-mentation. Patch-Based Techniques in Medical Imaging: 4th International Workshop, Patch-MI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4; 2018: Springer.
  • 19. Yamamoto T, Lacheret C, Fukutomi H, Kamraoui RA, Denat L, Zhang B, et al. Validation of a Denoising Method Using Deep Learning–Based Reconstruction to Quantify Multiple Sclero-sis Lesion Load on Fast FLAIR Imaging. American Journal of Neu-roradiology. 2022;43(8):1099-106.
There are 19 citations in total.

Details

Primary Language English
Subjects Radiology and Organ Imaging
Journal Section Research Article
Authors

Gülnihal Deniz 0000-0002-5944-8841

Ahmet Yalçın 0000-0002-9708-0988

Elif Yıldırım 0000-0003-3920-4847

Hüseyin Tan 0000-0003-3331-1828

Early Pub Date July 23, 2024
Publication Date August 29, 2024
Submission Date March 25, 2024
Acceptance Date April 26, 2024
Published in Issue Year 2024

Cite

Vancouver Deniz G, Yalçın A, Yıldırım E, Tan H. Evaluation of Lesion Burden in Pediatric Patients with Multiple Sclerosis by Computer Aided Algorithm and Comparison with Standard Detection Methods. Harran Üniversitesi Tıp Fakültesi Dergisi. 2024;21(2):159-65.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty