Research Article
BibTex RIS Cite

Malnütrisyonlu Çocukların Serbest Plazma Aminoasit Profili ve mTOR Protein Düzeyinin Araştırılması

Year 2020, , 311 - 315, 20.08.2020
https://doi.org/10.35440/hutfd.767424

Abstract

Amaç: Malnütrisyon bir ya da daha fazla besin öğesinin vücut dengesini bozacak şekilde yetersiz alınması sonucunda ortaya çıkan klinik bir tablodur. Etiyopatogenezin de beslenme problemleri, protein ve enerji eksikliği ve özellikle mTOR proteini ve kan aminoasitleri ile ilgili eksiklikler mevcuttur. Bu çalışmada büyüme ve gelişme geriliği olan çocukların serbest plazma aminoasit profili ve mTOR protein düzeyinin araştırılmasını amaçladık.
Materyal ve metod: Çalışmamızda hastanemiz pediatri polikliniğine başvuran 0-18 yaş arasında boy ve kilosu üç persantilin altında olan malnütrisyonlu çocuklarda mTOR düzeyi ve mTOR düzeyinin kan aminoasit düzeyleriyle ilişkisi incelenmiştir.
Bulgular: Çalışmaya 48 hasta ve kontrol grubu için tamamen sağlıklı 47 çocuk alındı. Beslenmenin yetersizliğine bağlı olarak malnütrisyon olan çocuklarda mTOR ve aminoasit seviyelerinde düşüklük beklenmesine rağmen referans aralıklarına göre değerlendirildiğinde kontrol grubu ile hasta grubu arasında anlamlı fark bulunamadı.
Sonuç: Büyüme ve gelişme geriliği olan çocuklarda bakılan mTOR ve aminoasit profili özel bir belirteç olarak kullanılamasa da bu alanda yapılacak birçok çalışmaya ışık tutabileceği kanısına varıldı.

Supporting Institution

harran üniversitesi

Project Number

17197

References

  • 1. World Health Organization. Indicators for assessing infant and young child feeding practices: Part III Country Profiles WHO, Geneva, 2010;
  • 2. Gomez F, Ramos GR, Frenk S, Cravioto MJ, Chavez R, Vazquez J ve ark. Mortality in second and third degree malnutrition. 1956. Bull World Health Organ 2000;78:1275- 80.
  • 3. Mishra SK, Bastola SP, Jha B. Biochemical nutritional indicators in children with protein energy malnutrition attending. Kanti Children Hospital, Kathmandu, Nepal. Kathmandu Univ Med J (KUMJ) 2009;7:129-34.
  • 4. Arıkan D. Erzurum İl Merkezindeki Sağlık Ocaklarına Kayıtlı 0-24 Aylık Çocuklarda Beslenme Durumu. Malnütrisyon Prevalansı ve Onu Etkileyen Faktörler. Doktora Tezi, Erzurum 1995; 30-7.
  • 5. Lafyatis R. Targeting fibrosis in systemic sclerosis. . Endocr Metab Immune Disord Drug Targets. 2006;6 (4):395-400.
  • 6. Klıonsky, D.J. The molecular machinery of autophagy. unanswered questions J. Cell Sci., 2005; 118: 7-18.
  • 7. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R, et al. Maternal and child undernutrition and overweight in low-income and middle-income countrie. Lancet2013;382:427–51.
  • 8. Noguchi Y, Zhang QW, Sugimoto T, Furuhata Y, Sakai R, et al. (2006) Network analysis of plasma and tissue amino acids and the generation of an amino index for potential diagnostic use. Am J Clin Nutr 83: 513S-519S.
  • 9. Imaizumi A, Nishikata N, Yoshida H, Yoneda J, Takehana S, et al. (2012) Clinical Implementation of Metabolomics. In: Roessner DU (ed.). Metabolomics: InTech pp: 289-314.
  • 10. Polge A, Bancel E, Bellet H, Strubel D, Poirey S, et al. (1997) Plasma amino acid concentrations in elderly patients with protein energy malnutrition. Age Ageing 26: 457-462.
  • 11. Fujita Y, Yoshimura Y, Inoue G (1978) Effect of low-protein diets on free amino acids in plasma of young men: effect of protein quality with maintenance or excess energy intake. J Nutr Sci Vitaminol (Tokyo) 24: 297-309.
  • 12. Fujita Y, Yamamoto T, Rikimaru T, Inoue G (1979) Effect of low protein diets on free amino acids in plasma of young men: effect of wheat gluten diet. J Nutr Sci Vitaminol (Tokyo) 25: 427-439.
  • 13. Imaizumi A, Nagao K, Jinzu H, Tanaka T, Kageyama Y, et al. (2017) Clinical characteristics of a subpopulation of low plasma free essential and semiessential amino acid levels in Japanese. Ningen Dock 31: 709-717.
  • 14. Jahoor F, Badaloo A, Reid M, Forrester T Protein kinetic differences between children with edematous and nonedematous severe childhood undernutrition in the fed and postabsorptive states. Am J Clin Nutr 2005;82:792–800.
  • 15. Manary MJ, Broadhead RL, Yarasheski KE Whole-body protein kinetics in marasmus and kwashiorkor during acute infection. Am J Clin Nutr 1998;67:1205–9.
  • 16. Lee JL, Oh ES, Lee RW, Finucane TE (2015) Serum Albumin and Prealbumin in Calorically Restricted, Nondiseased Individuals: A Systematic Review. Am J Med 128: 1023e1-1023e22.
  • 17. Komai S, Watanabe Y, Fujiwara Y, Kim H, Edahiro A, et al. (2016) Association between the nutritional status and the severity of sarcopenia among communitydwelling elderly Japanese people. Nihon Ronen Igakkai Zasshi 53: 387-395.
  • 18. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR (2003) Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr 78: 250- 258.
  • 19. Drummond MJ, Rasmussen BB (2008) Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Curr Opin Clin Nutr Metab Care 11: 222-226.
  • 20. Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, et al. (2008) Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab 294: E392-E400.
  • 21. Kim HK, Suzuki T, Saito K, Yoshida H, Kobayashi H, et al. (2012) Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. J Am Geriatr Soc 60: 16-23.
  • 22. Kim H, Suzuki T, Saito K, Kojima N, Hosoi E, et al. (2016) Long-term effects of exercise and amino acid supplementation on muscle mass, physical function and falls in community-dwelling elderly Japanese sarcopenic women: A 4-year follow-up study. Geriatr Gerontol Int 16: 175-1
  • 23. Yamakado M, Tanaka T, Nagao K, Ishizaka Y, Mitushima T, et al. (2012) Plasma amino acid profile is associated with visceral fat accumulation in obese Japanese subjects. Clin Obes 2: 29-40.
  • 24. 5. Tai ES, Tan ML, Stevens RD, Low YL, Muehlbauer MJ, et al. (2010) Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 53: 757-767.
  • 25. Wurtz P, Makinen VP, Soininen P, Kangas AJ, Tukiainen T, et al. (2012) Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes 61: 1372-1380. 26. Nakamura H, Jinzu H, Nagao K, Noguchi Y, Shimba N, et al. (2014) Plasma amino acid profiles are associated with insulin, C-peptide and adiponectin levels in type 2 diabetic patients. Nutr Diabetes 4: e133.
  • 27. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, et al. (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17: 448-453.
  • 28. Yamakado M, Nagao K, Imaizumi A, Tani M, Toda A, et al. (2015) Plasma free amino acid profiles predict four-year risk of developing diabetes, metabolic syndrome, dyslipidemia, and hypertension in Japanese population. Sci Rep 5.
  • 29. Nagao K, Yamakado M (2016) The role of amino acid profiles in diabetes risk assessment. Curr Opin Clin Nutr Metab Care 19: 328-335.

An Analysis of Free Plasma Amino Acid Profile and mTOR Protein Level in Children with Malnutrition

Year 2020, , 311 - 315, 20.08.2020
https://doi.org/10.35440/hutfd.767424

Abstract

Background: Malnutrition is a clinical case that stems from inadequate intake of one or more nutritional elements and results in an imbalance within the body. In its etiopathogenesis, feeding problems, protein and energy deficiency and particularly insufficiency of mTOR protein and blood amino acids are listed. In this study, we aimed to examine free plasma amino-acid profile and mTOR protein level in children with growth and developmental delay.
Materials and Methods: In our study, mTOR and blood amino acid levels were compared among 48 malnourished children aged 0-18 years who were admitted to our hospital's pediatric outpatient clinic and whose height and weight were below the three percentile and 47 healthy controls.
Results: The study were included 48 patients and 47 healthy children. Although mTOR and aminoacid levels were expected to be low in malnourished children, there was no significant difference between the control and patient groups.
Conclusion: Even though mTOR level and amino-acid profile, which are checked in children with growth and developmental delay, are not considered to be particular indicators, it is concluded that they can illuminate the pathway for further studies in this field.
Key words: Malnutrition, Nutrition, Amino acid, mTOR

Project Number

17197

References

  • 1. World Health Organization. Indicators for assessing infant and young child feeding practices: Part III Country Profiles WHO, Geneva, 2010;
  • 2. Gomez F, Ramos GR, Frenk S, Cravioto MJ, Chavez R, Vazquez J ve ark. Mortality in second and third degree malnutrition. 1956. Bull World Health Organ 2000;78:1275- 80.
  • 3. Mishra SK, Bastola SP, Jha B. Biochemical nutritional indicators in children with protein energy malnutrition attending. Kanti Children Hospital, Kathmandu, Nepal. Kathmandu Univ Med J (KUMJ) 2009;7:129-34.
  • 4. Arıkan D. Erzurum İl Merkezindeki Sağlık Ocaklarına Kayıtlı 0-24 Aylık Çocuklarda Beslenme Durumu. Malnütrisyon Prevalansı ve Onu Etkileyen Faktörler. Doktora Tezi, Erzurum 1995; 30-7.
  • 5. Lafyatis R. Targeting fibrosis in systemic sclerosis. . Endocr Metab Immune Disord Drug Targets. 2006;6 (4):395-400.
  • 6. Klıonsky, D.J. The molecular machinery of autophagy. unanswered questions J. Cell Sci., 2005; 118: 7-18.
  • 7. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R, et al. Maternal and child undernutrition and overweight in low-income and middle-income countrie. Lancet2013;382:427–51.
  • 8. Noguchi Y, Zhang QW, Sugimoto T, Furuhata Y, Sakai R, et al. (2006) Network analysis of plasma and tissue amino acids and the generation of an amino index for potential diagnostic use. Am J Clin Nutr 83: 513S-519S.
  • 9. Imaizumi A, Nishikata N, Yoshida H, Yoneda J, Takehana S, et al. (2012) Clinical Implementation of Metabolomics. In: Roessner DU (ed.). Metabolomics: InTech pp: 289-314.
  • 10. Polge A, Bancel E, Bellet H, Strubel D, Poirey S, et al. (1997) Plasma amino acid concentrations in elderly patients with protein energy malnutrition. Age Ageing 26: 457-462.
  • 11. Fujita Y, Yoshimura Y, Inoue G (1978) Effect of low-protein diets on free amino acids in plasma of young men: effect of protein quality with maintenance or excess energy intake. J Nutr Sci Vitaminol (Tokyo) 24: 297-309.
  • 12. Fujita Y, Yamamoto T, Rikimaru T, Inoue G (1979) Effect of low protein diets on free amino acids in plasma of young men: effect of wheat gluten diet. J Nutr Sci Vitaminol (Tokyo) 25: 427-439.
  • 13. Imaizumi A, Nagao K, Jinzu H, Tanaka T, Kageyama Y, et al. (2017) Clinical characteristics of a subpopulation of low plasma free essential and semiessential amino acid levels in Japanese. Ningen Dock 31: 709-717.
  • 14. Jahoor F, Badaloo A, Reid M, Forrester T Protein kinetic differences between children with edematous and nonedematous severe childhood undernutrition in the fed and postabsorptive states. Am J Clin Nutr 2005;82:792–800.
  • 15. Manary MJ, Broadhead RL, Yarasheski KE Whole-body protein kinetics in marasmus and kwashiorkor during acute infection. Am J Clin Nutr 1998;67:1205–9.
  • 16. Lee JL, Oh ES, Lee RW, Finucane TE (2015) Serum Albumin and Prealbumin in Calorically Restricted, Nondiseased Individuals: A Systematic Review. Am J Med 128: 1023e1-1023e22.
  • 17. Komai S, Watanabe Y, Fujiwara Y, Kim H, Edahiro A, et al. (2016) Association between the nutritional status and the severity of sarcopenia among communitydwelling elderly Japanese people. Nihon Ronen Igakkai Zasshi 53: 387-395.
  • 18. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR (2003) Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr 78: 250- 258.
  • 19. Drummond MJ, Rasmussen BB (2008) Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Curr Opin Clin Nutr Metab Care 11: 222-226.
  • 20. Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, et al. (2008) Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Physiol Endocrinol Metab 294: E392-E400.
  • 21. Kim HK, Suzuki T, Saito K, Yoshida H, Kobayashi H, et al. (2012) Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial. J Am Geriatr Soc 60: 16-23.
  • 22. Kim H, Suzuki T, Saito K, Kojima N, Hosoi E, et al. (2016) Long-term effects of exercise and amino acid supplementation on muscle mass, physical function and falls in community-dwelling elderly Japanese sarcopenic women: A 4-year follow-up study. Geriatr Gerontol Int 16: 175-1
  • 23. Yamakado M, Tanaka T, Nagao K, Ishizaka Y, Mitushima T, et al. (2012) Plasma amino acid profile is associated with visceral fat accumulation in obese Japanese subjects. Clin Obes 2: 29-40.
  • 24. 5. Tai ES, Tan ML, Stevens RD, Low YL, Muehlbauer MJ, et al. (2010) Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 53: 757-767.
  • 25. Wurtz P, Makinen VP, Soininen P, Kangas AJ, Tukiainen T, et al. (2012) Metabolic signatures of insulin resistance in 7,098 young adults. Diabetes 61: 1372-1380. 26. Nakamura H, Jinzu H, Nagao K, Noguchi Y, Shimba N, et al. (2014) Plasma amino acid profiles are associated with insulin, C-peptide and adiponectin levels in type 2 diabetic patients. Nutr Diabetes 4: e133.
  • 27. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, et al. (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17: 448-453.
  • 28. Yamakado M, Nagao K, Imaizumi A, Tani M, Toda A, et al. (2015) Plasma free amino acid profiles predict four-year risk of developing diabetes, metabolic syndrome, dyslipidemia, and hypertension in Japanese population. Sci Rep 5.
  • 29. Nagao K, Yamakado M (2016) The role of amino acid profiles in diabetes risk assessment. Curr Opin Clin Nutr Metab Care 19: 328-335.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Research Article
Authors

Ahmet Güzelçiçek 0000-0002-9733-3957

Muhammed Şeyhanlı This is me

Ataman Gönel 0000-0001-7200-1537

İsmail Koyuncu 0000-0002-9469-4757

Hüseyin Gümüş 0000-0002-9326-2194

Doğan Köse 0000-0002-2903-2976

Project Number 17197
Publication Date August 20, 2020
Submission Date July 9, 2020
Acceptance Date August 19, 2020
Published in Issue Year 2020

Cite

Vancouver Güzelçiçek A, Şeyhanlı M, Gönel A, Koyuncu İ, Gümüş H, Köse D. Malnütrisyonlu Çocukların Serbest Plazma Aminoasit Profili ve mTOR Protein Düzeyinin Araştırılması. Harran Üniversitesi Tıp Fakültesi Dergisi. 2020;17(2):311-5.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty