Research Article
BibTex RIS Cite

Kardiyopulmoner bypass sırasında akciğer ventilasyonunun total oksidatif durum, total antioksidan kapasite ve oksidatif stres indeksine etkisi

Year 2019, Volume: 16 Issue: 1, 154 - 158, 22.03.2019

Abstract

Amaç: 
Bu çalışmadaki amaç kardiyopulmoner bypass sırasında bir grup hastayı
%10 volüm diğer grup hastayı solunumu tamamen durdurularak pre-op ve bypass
sonrası TAS (Total Antioksidan Kapasite), TOS (Total Oksidatif Durum), OSİ (Oksidatif
Stres İndeksi) bakılarak Akciğer ventilasyonun Bypass sırasında gerekliğinin
belirlenmesidir.

Materyal ve Metod: Göğüs Kalp
Damar Cerrahisi bölümünde çeşitli sebeplerden dolayı kardiyopulmoner bypass
cerrahisi ile ameliyat olan toplam 30 (14 E + 16 K) hasta seçildi. Hastalar 2
gruba (akciğer ventilasyonu tamamen durdurulan grup ve akciğer %10 cc volum ile
çalıştırılan grup)  ayrıldı. İki gruba
ayrılan hastalardan kardiyopulmoner bypass öncesinde, pompaya giriş sırasında,
pompadan çıkış sırasında ve ameliyat sonrası olmak üzere toplam 4 jelsiz tüpe
kan alınarak bir çalışma grubu oluşturuldu. Alınan kanlar santrifüjde ayrıştırıldıktan
sonra plazmaları -80 °C’de saklanarak numunelerin çalışma gününde Erel
yöntemiyle Total oksidatif stress, Total antioksidan kapasite ve oksidatif
stres indeks çalışıldı.

Bulgular: TAS değeri 1,0945±0,25, TOS değeri
15,38±6,10 ve OSi değeri 1,4827±0,67 olarak bulunmuştur. Ventile edilmeyen
hastaların TAS değeri 1,1514±0,24, TOS değeri 25,73±9,25 ve OSi değeri
2,2993±0,85 olarak bulunmuştur. Hastalarda TOS değeri ventile edilmeyen
hastalarda artmıştır. Çalışmamızdaki TOS değerindeki artış TAS değeri üzerinde
herhangi bir değişiklik oluşturmamıştır. OSİ değeri üzerinde anlamlı fark
oluşmuştur. (p<0.05)







Sonuç: iki grup karşılaştırıldığında TAS
değerinde anlamlı bir değişkenlik olmazken, TOS ve OSİ değerleri açısından
anlamlı bir sonuç çıkmıştır. KPB sırasında ventile edilmeyen hastalar % 10
ventile edilen hastalara göre TOS ve OSİ değerleri yüksek ve anlamlı
bulunmuştur. Bu durum bize KPB sırasında % 10 ventile edilen hastalardaki
oksidatif stres parametrelerinin azaldığını göstermektedir.

References

  • Resources
  • 1. Kesteven PJL. Hemostatik Changes During Cardiopulmonary Bypass. Perfüsion, 1990;5 (supple):9-19.
  • 2. Gibbon JH, Jr. Artificial maintenance of circulation during experimental occlusion of pulmonary artery. Arch.Surg. 1937; 34:1105-6
  • 3. Phang P, Keough K. İnhibition of pulmonary surfactant by plasma from normal adult and from patients having cadiopulmonary bypass.J Thorac Cardiovasc Surg 1986;91:248-51
  • 4. Cruz EM, Ivy D. Jaggers J. Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. London 2014, Volume I.p. 857-879
  • 5. Yuh DD, Vricella LA, Yang S, Doty JR. Johns Hopkins Textbook of Cardiothoracic Surgery, 2nd Edition, 2014.p.973-983.
  • 6. Laffey JG, Boylan JF, Cheng DHC. The systemic inflammatory response to cardiac surgery. Anesthesiology 2002; 97; 215-52.
  • 7. Paparella D, Yau TM, Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J of Card-Thorac Surg 2002; 21;232-44.
  • 8. Larmann J, Theilmeier G. İnflammatory response to cardiac surgery: cardiopulmonary bypass versus noncardiopulmonary bypass surgery. Clin Anaesth 2004;18; 425-38.
  • 9. Sladen R, Jenkins L. Intermittent mandatory ventilation and controlled mechanical ventilation without positive end –expiratory pressure following cardiopulmonary bypass. Can Anaesth Sac J 1978;25:166-172
  • 10. Wolcox P, Bailey E, Hars J, et al. Pherenic nevre function and relattionship to atelectasis after coronary artery bypass surgery. Chest 1988;93:693
  • 11. Curtis JJ, Nawarawong W, Walls JT, et al. Elevated hemidiaphragm after cardiac operatons: Incidence,prognosis , and relationship to the use of topical ice slush. Ann Thorac Surg 1989;48:764
  • 12. Warren OJ, Smith AJ, Alexiou C, Rogers PL, Jawad N, Vincent C, et al. The inflammatory response to cardiopulmonary bypass: part 1--mechanisms of pathogenesis. J Cardiothorac Vasc Anesth 2009;23:223-31.
  • 13. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. ClinBiochem. 2004;37:277-85.---ErelO. A new automated colorimetric method for measuring total oxidant status. ClinBiochem. 2005;38:1103-11
  • 14. Smith EEJ, Naftel DC, Blackstone EH, Kirklin JW. Microvasculer permeability after cardiyopulmoner bypass: An Expermental study. J Thorac Cardiovasc Surg 1987;94:225-6.
  • 15. Chenoweth DE, Cooper SW, Hugli TE, Stewart RW, Blackstone EH, Krklin JW. Complement activation during cardiopulmonary bypass: Evidence for generation of C3a and C5a anaphylatoxins. N Engi J Med 981; 304-497.
  • 16. Bando K, Pillai R, Cameron DE, et al. Leukocyte depletion ameliorates free radical – mediated lung injury after cardiyopulmoner bypass. J Thorac Cardiovasculer Surg1990;99:873.
  • 17. Kirklin JK, Westbay S, Blackstone EH, Kirklin JW, Cheoweth DE, Pacifico AD. Coplement and damaging effects of cardioplmonary bypass. J Thorac Cardiovasc Surg 1983; 86:845-6.
  • 18. Hammermaister KE, Burcfiel C, Johnson R, Grover FL. İdendification of patients at greatest risk for developing major complications atcardia surgery. Circulation 1990;82:330
  • 19. Taggart DP, El – Fiky M, Carter R, Bowman A, Wheatley DJ. Respiratory dysfunction after uncomplicated cardiopulmonary bypass. Ann Thorac Surg 1993;56:1123-4.
  • 20. John LC, Ervine IM. A study assessing the potential benefit of continued ventilation during cardiopulmonary bypass. Interact CardioVasc Thorac Surg 2008;7(1):14-7.
  • 21. John LC, Ervine IM. A study assessing the potential benefit of continued ventilation during cardiopulmonary bypass. Interact CardioVasc Thorac Surg 2008;7(1):14-7.
  • 22. Wall, Michael H. MD; Royster, Roger L. MD. Pulmonary dysfunction after cardiopulmonary bypass: Should we ventilate the lungs on pump? Crit Care Med. 2000;28:1658-1660.
  • 23. Tusman G, Bohm SH, Vazquez de Anda GF, et al: „Alveolar recruitment strategy‟ improves arterial oxygenation during general anaesthesia. Br J Anaesth 1999; 82:8-13.
  • 24. Carvalho E. M. F., Gabriel E.A., Salerno T.A., Pulmonary Protection During Cardiac Surgery: Systematic Literature Review, Asian Cardiovasc Thorac Ann 2008;16:503-507.
  • 25. Imanıpour M., Bassampoor S. S., Nasrabadı A. N., Intraoperative variables associated with extubation time in patients undergoing coronary artery bypass graft surgery. Japan Journal of Nursing Science (2008) 5, 23–30
  • 26. Reyes A.,Vega G.,Rlancas R.,Morato R.,Moreno J.L.,Torrecilla C.,Cereijo E., Bypass. Chest 1997;112;193-201.
  • 27. Epstein SK., Ciubotaru RL., Wong JB. Effect of failed extubation on the outcome of mechanical ventilation. Chest 1997;112:186–192.
  • 28. Nicholson D. J., Kowalski S.E., Hamilton G. A., Meyers M. P., Serrette C., Duke P. C. Postoperative Pulmonary Function in Coronary Artery Bypass Graft Surgery Patients Undergoing Early Tracheal Extubation: A Comparison Between Short-Term Mechanical Ventilation and Early Extubation, Journal of Cardiothoracic and Vascular Anesthesia, 2002;16; 1:27-31.
  • 29. Gilbert T B.,Barnas G , Sequeira A. Impact of pleurotomy, continuous positive airway pressure, and fluid balance during cardiopulmonary bypass on lung mechanics and oxygenation. Journal of Cardiothoracic and Vascular Anesthesia, Volume 10, Issue 7, Pages 844-849.

The effect of lung ventilation on total oxidative condition, total antioxidant capacity and oxidative stress index during cardiopulmonary bypass

Year 2019, Volume: 16 Issue: 1, 154 - 158, 22.03.2019

Abstract

Background:The aim in this study is to obtain the necessity
of pulmonary ventilation during cardiopulmonary bypass by starting respiration
of a group of patients with 10% volume and the other group stopping respiration
totally as well as by examining TAS (Total Antioxidant Status), TOS (Total
oxidative status), OSİ (oxidative stress index) in pre-op and after bypass. 

Methods:Totally 30 patients (14
M+ 16 F) that had cardiopulmonary bypass surgery in Thoracic and Cardiovascular
Surgery Department for various reasons, were chosen. The patients were
seperated into 2 groups (as pulmonary respiration was stopped completely and
pulmonary respiration was started by 10% cc volume). Before carrdiopulmonary
bypass working group was formed among patients seperated into 2 groups by
taking totally 4 tubes of blood before cardiopulmonary bypass, at pump inlet,
pump outlet and after operation. After eluting taken blood in centrifuge, they
were kept at
 -80 °C. Then TAS, TOS and OSİ
were studied by using Erel method. 

 ResultsTAS value was found as
1,0945±0,25, TOS value as 15,38±6,10 and OSi value was found as
1,4827±0,67.
  TAS value of unventilated
patients was found as 1,1514±0,24, TOS value was as 25,73±9,25 and OSi value
was found as 2,2993±0,85. TOS value in patients increased in unventilated
patients. The increase in
  TOS value in
our study did not form any change on TAS value however there occured a
significant difference on
  OSİ value.
(p<0.05)

Conclusions: As two groups were
compared there did not occur a significant difference on TAS value, there came
out a significant result in terms of TOS and OSİ values. During CPB, TOS and
OSİ values of unventilated patients were found high and significant compared to
10% ventilated patients. This situation shows that oxidative stress parameters
in 10% ventilated patients decreases during CPB. 

References

  • Resources
  • 1. Kesteven PJL. Hemostatik Changes During Cardiopulmonary Bypass. Perfüsion, 1990;5 (supple):9-19.
  • 2. Gibbon JH, Jr. Artificial maintenance of circulation during experimental occlusion of pulmonary artery. Arch.Surg. 1937; 34:1105-6
  • 3. Phang P, Keough K. İnhibition of pulmonary surfactant by plasma from normal adult and from patients having cadiopulmonary bypass.J Thorac Cardiovasc Surg 1986;91:248-51
  • 4. Cruz EM, Ivy D. Jaggers J. Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. London 2014, Volume I.p. 857-879
  • 5. Yuh DD, Vricella LA, Yang S, Doty JR. Johns Hopkins Textbook of Cardiothoracic Surgery, 2nd Edition, 2014.p.973-983.
  • 6. Laffey JG, Boylan JF, Cheng DHC. The systemic inflammatory response to cardiac surgery. Anesthesiology 2002; 97; 215-52.
  • 7. Paparella D, Yau TM, Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J of Card-Thorac Surg 2002; 21;232-44.
  • 8. Larmann J, Theilmeier G. İnflammatory response to cardiac surgery: cardiopulmonary bypass versus noncardiopulmonary bypass surgery. Clin Anaesth 2004;18; 425-38.
  • 9. Sladen R, Jenkins L. Intermittent mandatory ventilation and controlled mechanical ventilation without positive end –expiratory pressure following cardiopulmonary bypass. Can Anaesth Sac J 1978;25:166-172
  • 10. Wolcox P, Bailey E, Hars J, et al. Pherenic nevre function and relattionship to atelectasis after coronary artery bypass surgery. Chest 1988;93:693
  • 11. Curtis JJ, Nawarawong W, Walls JT, et al. Elevated hemidiaphragm after cardiac operatons: Incidence,prognosis , and relationship to the use of topical ice slush. Ann Thorac Surg 1989;48:764
  • 12. Warren OJ, Smith AJ, Alexiou C, Rogers PL, Jawad N, Vincent C, et al. The inflammatory response to cardiopulmonary bypass: part 1--mechanisms of pathogenesis. J Cardiothorac Vasc Anesth 2009;23:223-31.
  • 13. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. ClinBiochem. 2004;37:277-85.---ErelO. A new automated colorimetric method for measuring total oxidant status. ClinBiochem. 2005;38:1103-11
  • 14. Smith EEJ, Naftel DC, Blackstone EH, Kirklin JW. Microvasculer permeability after cardiyopulmoner bypass: An Expermental study. J Thorac Cardiovasc Surg 1987;94:225-6.
  • 15. Chenoweth DE, Cooper SW, Hugli TE, Stewart RW, Blackstone EH, Krklin JW. Complement activation during cardiopulmonary bypass: Evidence for generation of C3a and C5a anaphylatoxins. N Engi J Med 981; 304-497.
  • 16. Bando K, Pillai R, Cameron DE, et al. Leukocyte depletion ameliorates free radical – mediated lung injury after cardiyopulmoner bypass. J Thorac Cardiovasculer Surg1990;99:873.
  • 17. Kirklin JK, Westbay S, Blackstone EH, Kirklin JW, Cheoweth DE, Pacifico AD. Coplement and damaging effects of cardioplmonary bypass. J Thorac Cardiovasc Surg 1983; 86:845-6.
  • 18. Hammermaister KE, Burcfiel C, Johnson R, Grover FL. İdendification of patients at greatest risk for developing major complications atcardia surgery. Circulation 1990;82:330
  • 19. Taggart DP, El – Fiky M, Carter R, Bowman A, Wheatley DJ. Respiratory dysfunction after uncomplicated cardiopulmonary bypass. Ann Thorac Surg 1993;56:1123-4.
  • 20. John LC, Ervine IM. A study assessing the potential benefit of continued ventilation during cardiopulmonary bypass. Interact CardioVasc Thorac Surg 2008;7(1):14-7.
  • 21. John LC, Ervine IM. A study assessing the potential benefit of continued ventilation during cardiopulmonary bypass. Interact CardioVasc Thorac Surg 2008;7(1):14-7.
  • 22. Wall, Michael H. MD; Royster, Roger L. MD. Pulmonary dysfunction after cardiopulmonary bypass: Should we ventilate the lungs on pump? Crit Care Med. 2000;28:1658-1660.
  • 23. Tusman G, Bohm SH, Vazquez de Anda GF, et al: „Alveolar recruitment strategy‟ improves arterial oxygenation during general anaesthesia. Br J Anaesth 1999; 82:8-13.
  • 24. Carvalho E. M. F., Gabriel E.A., Salerno T.A., Pulmonary Protection During Cardiac Surgery: Systematic Literature Review, Asian Cardiovasc Thorac Ann 2008;16:503-507.
  • 25. Imanıpour M., Bassampoor S. S., Nasrabadı A. N., Intraoperative variables associated with extubation time in patients undergoing coronary artery bypass graft surgery. Japan Journal of Nursing Science (2008) 5, 23–30
  • 26. Reyes A.,Vega G.,Rlancas R.,Morato R.,Moreno J.L.,Torrecilla C.,Cereijo E., Bypass. Chest 1997;112;193-201.
  • 27. Epstein SK., Ciubotaru RL., Wong JB. Effect of failed extubation on the outcome of mechanical ventilation. Chest 1997;112:186–192.
  • 28. Nicholson D. J., Kowalski S.E., Hamilton G. A., Meyers M. P., Serrette C., Duke P. C. Postoperative Pulmonary Function in Coronary Artery Bypass Graft Surgery Patients Undergoing Early Tracheal Extubation: A Comparison Between Short-Term Mechanical Ventilation and Early Extubation, Journal of Cardiothoracic and Vascular Anesthesia, 2002;16; 1:27-31.
  • 29. Gilbert T B.,Barnas G , Sequeira A. Impact of pleurotomy, continuous positive airway pressure, and fluid balance during cardiopulmonary bypass on lung mechanics and oxygenation. Journal of Cardiothoracic and Vascular Anesthesia, Volume 10, Issue 7, Pages 844-849.
There are 30 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Article
Authors

Mahmut Padak 0000-0001-6863-1907

Mustafa Göz This is me 0000-0003-1951-8881

Reşat Dikme 0000-0001-9157-7830

Mehmet Salih Aydın This is me 0000-0002-6652-6035

İsmail Koyuncu This is me 0000-0002-9469-4757

Ömer Göç This is me 0000-0002-3047-6232

Publication Date March 22, 2019
Submission Date July 16, 2018
Acceptance Date January 31, 2019
Published in Issue Year 2019 Volume: 16 Issue: 1

Cite

Vancouver Padak M, Göz M, Dikme R, Aydın MS, Koyuncu İ, Göç Ö. The effect of lung ventilation on total oxidative condition, total antioxidant capacity and oxidative stress index during cardiopulmonary bypass. Harran Üniversitesi Tıp Fakültesi Dergisi. 2019;16(1):154-8.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty