BibTex RIS Cite

NEW CRITERIA FOR p-NILPOTENCE OF FINITE GROUPS

Year 2010, Volume: 7 Issue: 7, 120 - 127, 01.06.2010

Abstract

A subgroup H is X-g pronormal in G if, for H, X ≤ G and g ∈ G, H ∩ X and Hg ∩ X are conjugate in J = hH ∩ X, Hg ∩ Xi. In this paper, we investigate the structure of a finite group G under the assumption that certain subgroups are X-g pronormal, where X = F(G) is the Fitting subgroup of G.

References

  • M. Asaad, On the supersolvability of finite groups, I, Acta Math. Acad. Sci. Hungar., 38(1-4) (1981), 57-59.
  • M. Asaad, Some results on p-nilpotence and supersolvability of fintie groups, Comm. Algebra, 34 (2006), 4217-4224.
  • M. Asaad, On p-nilpotence and supersolvability of finite groups, Comm. Alge- bra, 34 (2006), 189-195.
  • M. Asaad, M. Ramadan, and A. Shaalan, Influence of π-quasinormality of maximal subgroups of Sylow subgroups of Fitting subgroup of a finite group, Arch. Math., 56 (1991), 521-527.
  • M. Bianchi, A. G. B. Mauri, M. Herzog, and L. Verard, On finite solvable groups in which normality is a transitive relation, J. Group Theory, 3 (2000), 156.
  • P. Cs¨org¨o, and M. Herzog, On supersolvable groups and the nilpotator, Comm. Algebra, 32(2) (2004), 609-620.
  • A. D’Anillo, Groups in which n-maximal subgroups are dualpronormal, Rend. Sem. Mat. Padova, 84 (1990), 83-90.
  • R. Dark, and A. D. Feldman, Charcterization of injectors in finite soluble groups, J. Group Theory, 9 (2006), 775-785.
  • K. Doerk, and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, New York, 1992.
  • D. Gorenstein, Finite Groups, 2nd, AMS Chelsea Pub., Rhode Island, 1980.
  • H. Huppert, Endliche Gruppen I, Springer-Verlag, New York, 1967.
  • D. Li and X. Guo, The influence of c-normality of subgroups on the structure of finite groups II, Comm. Algebra, 26 (1998), 1913-1922.
  • D. J. Robinson, A Course in the Theory of Groups, 2nd, Springer-Verlag, New York, 1996.
  • H. Wei, and Y. Wang, On c*-normality and its properties, J. Group Theory, (2007), 211-223.
  • A. Yokoyama, Finite solvable groups whose F-hypercenter containing all mini- mal subgroups, Arch. Math., 26 (1975), 123-130.
  • H. J. Zassenhaus, The Theory of Groups, 2nd, Chelsea Pub.Co., New York, Shitian Liu School of Science Sichuan University of Science & Engineering Zigong, 643000, P.R.China e-mail: liust@suse.edu.cn
Year 2010, Volume: 7 Issue: 7, 120 - 127, 01.06.2010

Abstract

References

  • M. Asaad, On the supersolvability of finite groups, I, Acta Math. Acad. Sci. Hungar., 38(1-4) (1981), 57-59.
  • M. Asaad, Some results on p-nilpotence and supersolvability of fintie groups, Comm. Algebra, 34 (2006), 4217-4224.
  • M. Asaad, On p-nilpotence and supersolvability of finite groups, Comm. Alge- bra, 34 (2006), 189-195.
  • M. Asaad, M. Ramadan, and A. Shaalan, Influence of π-quasinormality of maximal subgroups of Sylow subgroups of Fitting subgroup of a finite group, Arch. Math., 56 (1991), 521-527.
  • M. Bianchi, A. G. B. Mauri, M. Herzog, and L. Verard, On finite solvable groups in which normality is a transitive relation, J. Group Theory, 3 (2000), 156.
  • P. Cs¨org¨o, and M. Herzog, On supersolvable groups and the nilpotator, Comm. Algebra, 32(2) (2004), 609-620.
  • A. D’Anillo, Groups in which n-maximal subgroups are dualpronormal, Rend. Sem. Mat. Padova, 84 (1990), 83-90.
  • R. Dark, and A. D. Feldman, Charcterization of injectors in finite soluble groups, J. Group Theory, 9 (2006), 775-785.
  • K. Doerk, and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, New York, 1992.
  • D. Gorenstein, Finite Groups, 2nd, AMS Chelsea Pub., Rhode Island, 1980.
  • H. Huppert, Endliche Gruppen I, Springer-Verlag, New York, 1967.
  • D. Li and X. Guo, The influence of c-normality of subgroups on the structure of finite groups II, Comm. Algebra, 26 (1998), 1913-1922.
  • D. J. Robinson, A Course in the Theory of Groups, 2nd, Springer-Verlag, New York, 1996.
  • H. Wei, and Y. Wang, On c*-normality and its properties, J. Group Theory, (2007), 211-223.
  • A. Yokoyama, Finite solvable groups whose F-hypercenter containing all mini- mal subgroups, Arch. Math., 26 (1975), 123-130.
  • H. J. Zassenhaus, The Theory of Groups, 2nd, Chelsea Pub.Co., New York, Shitian Liu School of Science Sichuan University of Science & Engineering Zigong, 643000, P.R.China e-mail: liust@suse.edu.cn
There are 16 citations in total.

Details

Other ID JA68MD76CB
Journal Section Articles
Authors

Shitian Liu This is me

Publication Date June 1, 2010
Published in Issue Year 2010 Volume: 7 Issue: 7

Cite

APA Liu, S. (2010). NEW CRITERIA FOR p-NILPOTENCE OF FINITE GROUPS. International Electronic Journal of Algebra, 7(7), 120-127.
AMA Liu S. NEW CRITERIA FOR p-NILPOTENCE OF FINITE GROUPS. IEJA. June 2010;7(7):120-127.
Chicago Liu, Shitian. “NEW CRITERIA FOR P-NILPOTENCE OF FINITE GROUPS”. International Electronic Journal of Algebra 7, no. 7 (June 2010): 120-27.
EndNote Liu S (June 1, 2010) NEW CRITERIA FOR p-NILPOTENCE OF FINITE GROUPS. International Electronic Journal of Algebra 7 7 120–127.
IEEE S. Liu, “NEW CRITERIA FOR p-NILPOTENCE OF FINITE GROUPS”, IEJA, vol. 7, no. 7, pp. 120–127, 2010.
ISNAD Liu, Shitian. “NEW CRITERIA FOR P-NILPOTENCE OF FINITE GROUPS”. International Electronic Journal of Algebra 7/7 (June 2010), 120-127.
JAMA Liu S. NEW CRITERIA FOR p-NILPOTENCE OF FINITE GROUPS. IEJA. 2010;7:120–127.
MLA Liu, Shitian. “NEW CRITERIA FOR P-NILPOTENCE OF FINITE GROUPS”. International Electronic Journal of Algebra, vol. 7, no. 7, 2010, pp. 120-7.
Vancouver Liu S. NEW CRITERIA FOR p-NILPOTENCE OF FINITE GROUPS. IEJA. 2010;7(7):120-7.