Research Article
BibTex RIS Cite
Year 2024, Early Access, 1 - 24
https://doi.org/10.24330/ieja.1554197

Abstract

References

  • G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Extensions of Rings and Modules, Springer, New York, 2013.
  • J. Cirulis, Extending the star order to Rickart rings, Linear Multilinear Algebra, 64(8) (2015), 1498-1508.
  • J. Cirulis and I. Cremer, Notes on reduced Rickart rings, I. Representation and equational axiomatizations, Beitr. Algebra Geom., 59(2) (2018), 375-389.
  • J. Cirulis and I. Cremer, Correction to Notes on reduced Rickart rings, I. Representation and equational axiomatizations, Beitr. Algebra Geom., 61(3) (2020), 579-580.
  • W. H. Cornish, The variety of commutative Rickart rings, Nanta Math., 5(2) (1972), 43-51.
  • W. H. Cornish, Boolean orthogonalities and minimal prime ideals, Comm. Algebra, 3(10) (1975), 859-900.
  • J. Fountain, Right PP monoids with central idempotents, Semigroup Forum, 13(3) (1976/77), 229-237.
  • J. A. Fraser and W. K. Nicholson, Reduced PP-rings, Math. Japon., 34(5) (1989), 715-725.
  • J. M. Howie, Fundamentals of Semigroup Theory, London Math. Soc. Monogr. (N.S.), 12 Oxford Sci. Publ., 1995.
  • M. F. Janowitz, A note on Rickart rings and semi-Boolean algebras, Algebra Universalis, 6(1) (1976), 9-12.
  • C. J. Penning, Minimal duplicator rings, Nederl. Akad. Wetensch. Proc. Ser. A 66 Indag. Math., 25 (1963), 295-312.
  • J. Plonka, On a method of construction of abstract algebras, Fund. Math., 61 (1967), 183-189.
  • J. J. Rotman, Advanced Modern Algebra, Grad. Stud. Math., 114, 2010.
  • T. P. Speed, A note on commutative Baer rings, J. Austral. Math. Soc., 14(3) (1972), 257-263.
  • T. Stokes, Domain and range operations in semigroups and rings, Comm. Algebra, 43(9) (2015), 3979-4007.
  • N. V. Subrahmanyam, Structure theory for a generalised Boolean ring, Math. Ann., 141 (1960), 297-310.
  • I. Sussman, Ideal structure and semigroup domain decomposition of associate rings, Math. Ann., 140(2) (1960), 87-93.

Decompositions of multiplicative semigroups of m-domain rings and reduced Rickart rings

Year 2024, Early Access, 1 - 24
https://doi.org/10.24330/ieja.1554197

Abstract

The main result of this article is that the multiplicative semigroup of an m-domain ring is a strong semilattice of certain subsemigroups, each of which turns out to be a \rcancellative\ monoid, and that this presentation of the semigroup as a strong semilattice of \rcancellative\ semigroups is essentially unique. As a consequence, it is shown that, given an m-domain ring $ \ang{R,+,\cdot} $ with the unary operation $ \dop{} $ mapping every element to its minimal idempotent duplicator (in the sense of N.V.~Subrahmanyam), the algebra $ \ang{R,\cdot,\dop{}} $ is a strong semilattice of \rcancellative\ \dsemigroup s (in the sense of T.~Stokes), also essentially unique. Implications for reduced Rickart rings, which can be seen as a subclass of m-domain rings, are also described.

References

  • G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Extensions of Rings and Modules, Springer, New York, 2013.
  • J. Cirulis, Extending the star order to Rickart rings, Linear Multilinear Algebra, 64(8) (2015), 1498-1508.
  • J. Cirulis and I. Cremer, Notes on reduced Rickart rings, I. Representation and equational axiomatizations, Beitr. Algebra Geom., 59(2) (2018), 375-389.
  • J. Cirulis and I. Cremer, Correction to Notes on reduced Rickart rings, I. Representation and equational axiomatizations, Beitr. Algebra Geom., 61(3) (2020), 579-580.
  • W. H. Cornish, The variety of commutative Rickart rings, Nanta Math., 5(2) (1972), 43-51.
  • W. H. Cornish, Boolean orthogonalities and minimal prime ideals, Comm. Algebra, 3(10) (1975), 859-900.
  • J. Fountain, Right PP monoids with central idempotents, Semigroup Forum, 13(3) (1976/77), 229-237.
  • J. A. Fraser and W. K. Nicholson, Reduced PP-rings, Math. Japon., 34(5) (1989), 715-725.
  • J. M. Howie, Fundamentals of Semigroup Theory, London Math. Soc. Monogr. (N.S.), 12 Oxford Sci. Publ., 1995.
  • M. F. Janowitz, A note on Rickart rings and semi-Boolean algebras, Algebra Universalis, 6(1) (1976), 9-12.
  • C. J. Penning, Minimal duplicator rings, Nederl. Akad. Wetensch. Proc. Ser. A 66 Indag. Math., 25 (1963), 295-312.
  • J. Plonka, On a method of construction of abstract algebras, Fund. Math., 61 (1967), 183-189.
  • J. J. Rotman, Advanced Modern Algebra, Grad. Stud. Math., 114, 2010.
  • T. P. Speed, A note on commutative Baer rings, J. Austral. Math. Soc., 14(3) (1972), 257-263.
  • T. Stokes, Domain and range operations in semigroups and rings, Comm. Algebra, 43(9) (2015), 3979-4007.
  • N. V. Subrahmanyam, Structure theory for a generalised Boolean ring, Math. Ann., 141 (1960), 297-310.
  • I. Sussman, Ideal structure and semigroup domain decomposition of associate rings, Math. Ann., 140(2) (1960), 87-93.
There are 17 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Insa Cremer This is me

Early Pub Date September 22, 2024
Publication Date
Submission Date November 12, 2023
Acceptance Date July 22, 2024
Published in Issue Year 2024 Early Access

Cite

APA Cremer, I. (2024). Decompositions of multiplicative semigroups of m-domain rings and reduced Rickart rings. International Electronic Journal of Algebra1-24. https://doi.org/10.24330/ieja.1554197
AMA Cremer I. Decompositions of multiplicative semigroups of m-domain rings and reduced Rickart rings. IEJA. Published online September 1, 2024:1-24. doi:10.24330/ieja.1554197
Chicago Cremer, Insa. “Decompositions of Multiplicative Semigroups of M-Domain Rings and Reduced Rickart Rings”. International Electronic Journal of Algebra, September (September 2024), 1-24. https://doi.org/10.24330/ieja.1554197.
EndNote Cremer I (September 1, 2024) Decompositions of multiplicative semigroups of m-domain rings and reduced Rickart rings. International Electronic Journal of Algebra 1–24.
IEEE I. Cremer, “Decompositions of multiplicative semigroups of m-domain rings and reduced Rickart rings”, IEJA, pp. 1–24, September 2024, doi: 10.24330/ieja.1554197.
ISNAD Cremer, Insa. “Decompositions of Multiplicative Semigroups of M-Domain Rings and Reduced Rickart Rings”. International Electronic Journal of Algebra. September 2024. 1-24. https://doi.org/10.24330/ieja.1554197.
JAMA Cremer I. Decompositions of multiplicative semigroups of m-domain rings and reduced Rickart rings. IEJA. 2024;:1–24.
MLA Cremer, Insa. “Decompositions of Multiplicative Semigroups of M-Domain Rings and Reduced Rickart Rings”. International Electronic Journal of Algebra, 2024, pp. 1-24, doi:10.24330/ieja.1554197.
Vancouver Cremer I. Decompositions of multiplicative semigroups of m-domain rings and reduced Rickart rings. IEJA. 2024:1-24.