Research Article
BibTex RIS Cite

Additivity of multiplicative generalized Jordan maps on triangular rings

Year 2025, Volume: 37 Issue: 37, 91 - 111, 14.01.2025
https://doi.org/10.24330/ieja.1488471

Abstract

This paper presents three different conditions for the additivity of a map on a triangular ring $\mathcal{T}$. First, we prove a map $\delta$ on $\mathcal{T}$ satisfying $delta(a_1b_1+b_1a_1)=\delta(a_1)b_1 +a_1 \tau(b_1)+\delta(b_1)a_1 + b_1\tau(a_1)$ for all $a_1,b_1\in \mathcal{T}$ and for some maps $\tau$ over $\mathcal{T}$ satisfying $\tau(a_1b_1+b_1a_1)=\tau(a_1)b_1+a_1 \tau(b_1)+\tau(b_1)a_1+b_1\tau(a_1)$, is additive. Secondly, it is shown that a map $T$ on $\mathcal{T}$ satisfying $T(a_1b_1)=T(a_1)b_1=a_1T(b_1)$ for all $a_1,b_1\in \mathcal{T}$ is additive. Finally, we show that if a map $D$ over $\mathcal{T}$ satisfies $(m+n)D(a_1b_1)=2mD(a_1)b_1+2na_1D(b_1)$ for all $a_1,b_1\in \mathcal{T}$ and integers $m,n\geq 1$, then $D$ is additive.

References

  • S. Ali and A. Fosner, On generalized (m, n)-derivations and generalized (m, n)-Jordan derivations in rings, Algebra Colloq., 21(3) (2014), 411-420.
  • S. Aziz, A. Ghosh and O. Prakash, Additivity of multiplicative (generalized) skew semi-derivations on rings, Georgian Math. J., (2023), doi.org/10.1515/gmj-2023-2100.
  • M. N. Daif, When is a multiplicative derivation additive?, Internat. J. Math. Math. Sci., 14(3) (1991), 615-618.
  • M. S. T. El-Sayiad, M. N. Daif and V. D. Filippis, Multiplicativity of left centralizers forcing additivity, Bol. Soc. Parana. Mat. (3), 32(1) (2014), 61-69.
  • B. L. M. Ferreira, Multiplicative maps on triangular n-matrix rings, Int. J. Math. Game Theory Algebr., {23}(2) (2014), 1-14.
  • B. L. M. Ferreira, Jordan derivations on triangular matrix rings, Extracta Math., 30(2) (2015), 181-190.
  • A. Ghosh and O. Prakash, New results on generalized (m,n)-Jordan derivations over semiprime rings, {Southeast Asian Bull. Math.,} 43(3) (2019), 323-331.
  • A. Ghosh and O. Prakash, Characterization of Jordan {$g,h$}-derivations over matrix algebras, J. Algebr. Syst., 11(1) (2023), 77-95.
  • I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104-1110.
  • W. Jing and S. Lu, Generalized Jordan derivations on prime rings and standard operator algebras, Taiwanese J. Math., 7(4) (2003), 605-613.
  • W. S. Martindale, III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc., 21(3) (1969), 695-698.
  • C. E. Rickart, One-to-one mappings of rings and lattices, Bull. Amer. Math. Soc., 54 (1948), 758-764.
  • Y. Wang, The additivity of multiplicative maps on rings, Comm. Algebra, 37(7) (2009), 2351-2356.
  • Y. Wang, Additivity of multiplicative maps on triangular rings, Linear Algebra Appl., 434(3) (2011), 625-635.
  • J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math., 2 (1952), 251-261.
Year 2025, Volume: 37 Issue: 37, 91 - 111, 14.01.2025
https://doi.org/10.24330/ieja.1488471

Abstract

References

  • S. Ali and A. Fosner, On generalized (m, n)-derivations and generalized (m, n)-Jordan derivations in rings, Algebra Colloq., 21(3) (2014), 411-420.
  • S. Aziz, A. Ghosh and O. Prakash, Additivity of multiplicative (generalized) skew semi-derivations on rings, Georgian Math. J., (2023), doi.org/10.1515/gmj-2023-2100.
  • M. N. Daif, When is a multiplicative derivation additive?, Internat. J. Math. Math. Sci., 14(3) (1991), 615-618.
  • M. S. T. El-Sayiad, M. N. Daif and V. D. Filippis, Multiplicativity of left centralizers forcing additivity, Bol. Soc. Parana. Mat. (3), 32(1) (2014), 61-69.
  • B. L. M. Ferreira, Multiplicative maps on triangular n-matrix rings, Int. J. Math. Game Theory Algebr., {23}(2) (2014), 1-14.
  • B. L. M. Ferreira, Jordan derivations on triangular matrix rings, Extracta Math., 30(2) (2015), 181-190.
  • A. Ghosh and O. Prakash, New results on generalized (m,n)-Jordan derivations over semiprime rings, {Southeast Asian Bull. Math.,} 43(3) (2019), 323-331.
  • A. Ghosh and O. Prakash, Characterization of Jordan {$g,h$}-derivations over matrix algebras, J. Algebr. Syst., 11(1) (2023), 77-95.
  • I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104-1110.
  • W. Jing and S. Lu, Generalized Jordan derivations on prime rings and standard operator algebras, Taiwanese J. Math., 7(4) (2003), 605-613.
  • W. S. Martindale, III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc., 21(3) (1969), 695-698.
  • C. E. Rickart, One-to-one mappings of rings and lattices, Bull. Amer. Math. Soc., 54 (1948), 758-764.
  • Y. Wang, The additivity of multiplicative maps on rings, Comm. Algebra, 37(7) (2009), 2351-2356.
  • Y. Wang, Additivity of multiplicative maps on triangular rings, Linear Algebra Appl., 434(3) (2011), 625-635.
  • J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math., 2 (1952), 251-261.
There are 15 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Sk Aziz This is me

Arindam Ghosh This is me

Om Prakash

Early Pub Date May 23, 2024
Publication Date January 14, 2025
Submission Date October 12, 2023
Acceptance Date January 27, 2024
Published in Issue Year 2025 Volume: 37 Issue: 37

Cite

APA Aziz, S., Ghosh, A., & Prakash, O. (2025). Additivity of multiplicative generalized Jordan maps on triangular rings. International Electronic Journal of Algebra, 37(37), 91-111. https://doi.org/10.24330/ieja.1488471
AMA Aziz S, Ghosh A, Prakash O. Additivity of multiplicative generalized Jordan maps on triangular rings. IEJA. January 2025;37(37):91-111. doi:10.24330/ieja.1488471
Chicago Aziz, Sk, Arindam Ghosh, and Om Prakash. “Additivity of Multiplicative Generalized Jordan Maps on Triangular Rings”. International Electronic Journal of Algebra 37, no. 37 (January 2025): 91-111. https://doi.org/10.24330/ieja.1488471.
EndNote Aziz S, Ghosh A, Prakash O (January 1, 2025) Additivity of multiplicative generalized Jordan maps on triangular rings. International Electronic Journal of Algebra 37 37 91–111.
IEEE S. Aziz, A. Ghosh, and O. Prakash, “Additivity of multiplicative generalized Jordan maps on triangular rings”, IEJA, vol. 37, no. 37, pp. 91–111, 2025, doi: 10.24330/ieja.1488471.
ISNAD Aziz, Sk et al. “Additivity of Multiplicative Generalized Jordan Maps on Triangular Rings”. International Electronic Journal of Algebra 37/37 (January 2025), 91-111. https://doi.org/10.24330/ieja.1488471.
JAMA Aziz S, Ghosh A, Prakash O. Additivity of multiplicative generalized Jordan maps on triangular rings. IEJA. 2025;37:91–111.
MLA Aziz, Sk et al. “Additivity of Multiplicative Generalized Jordan Maps on Triangular Rings”. International Electronic Journal of Algebra, vol. 37, no. 37, 2025, pp. 91-111, doi:10.24330/ieja.1488471.
Vancouver Aziz S, Ghosh A, Prakash O. Additivity of multiplicative generalized Jordan maps on triangular rings. IEJA. 2025;37(37):91-111.