Research Article
BibTex RIS Cite
Year 2025, Volume: 37 Issue: 37, 1 - 13, 14.01.2025
https://doi.org/10.24330/ieja.1607238

Abstract

References

  • A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc., 64 (1948), 552-593.
  • M. Cerqua and A. Facchini, Pre-Lie algebras, their multiplicative lattice, and idempotent endomorphisms, in ``Functor categories, model theory, algebraic analysis and constructive methods'', A. Martsinkovski Ed., Springer Proc. Math. Stat., Springer, Cham, 450 (2024), 23-44.
  • F. A. F. Ebrahim and A. Facchini, Idempotent pre-endomorphisms of algebras, Comm. Algebra, 52(2) (2024), 514-527.
  • M. Goze and E. Remm, Lie-admissible algebras and operads, J. Algebra, 273(1) (2004), 129-152.
  • N. Ismailov and U. Umirbaev, On a variety of right-symmetric algebras, J. Algebra, 658 (2024), 759-778.
  • P. J. Laufer and M. L. Tomber, Some Lie admissible algebras, Canadian J. Math., 14 (1962), 287-292.
  • J. M. Osborn, Modules over nonassociative rings, Comm. Algebra, 6(13) (1978), 1297-1358.
  • K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov and A. I. Shirshov, Rings That Are Nearly Associative, translated from the Russian by H. F. Smith, Pure and Applied Math., 104, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982.

On a variety of Lie-admissible algebras

Year 2025, Volume: 37 Issue: 37, 1 - 13, 14.01.2025
https://doi.org/10.24330/ieja.1607238

Abstract

The aim of this paper is to propose the study of a class of Lie-admissible algebras. It is the class (variety) of all the (not-necessarily associative) algebras $M$ over a commutative ring $k$ with identity $1_k$ for which $(x,y,z)=(y,x,z)+(z,y,x)$ for every $x,y,z\in M$. Here $(x,y,z)$ denotes the associator of $M$. We call such algebras algebras of type $\mathcal{V}_2$. Very little is known about these algebras.

References

  • A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc., 64 (1948), 552-593.
  • M. Cerqua and A. Facchini, Pre-Lie algebras, their multiplicative lattice, and idempotent endomorphisms, in ``Functor categories, model theory, algebraic analysis and constructive methods'', A. Martsinkovski Ed., Springer Proc. Math. Stat., Springer, Cham, 450 (2024), 23-44.
  • F. A. F. Ebrahim and A. Facchini, Idempotent pre-endomorphisms of algebras, Comm. Algebra, 52(2) (2024), 514-527.
  • M. Goze and E. Remm, Lie-admissible algebras and operads, J. Algebra, 273(1) (2004), 129-152.
  • N. Ismailov and U. Umirbaev, On a variety of right-symmetric algebras, J. Algebra, 658 (2024), 759-778.
  • P. J. Laufer and M. L. Tomber, Some Lie admissible algebras, Canadian J. Math., 14 (1962), 287-292.
  • J. M. Osborn, Modules over nonassociative rings, Comm. Algebra, 6(13) (1978), 1297-1358.
  • K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov and A. I. Shirshov, Rings That Are Nearly Associative, translated from the Russian by H. F. Smith, Pure and Applied Math., 104, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982.
There are 8 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Articles
Authors

Alberto Facchini

Early Pub Date December 25, 2024
Publication Date January 14, 2025
Submission Date July 16, 2024
Acceptance Date December 17, 2024
Published in Issue Year 2025 Volume: 37 Issue: 37

Cite

APA Facchini, A. (2025). On a variety of Lie-admissible algebras. International Electronic Journal of Algebra, 37(37), 1-13. https://doi.org/10.24330/ieja.1607238
AMA Facchini A. On a variety of Lie-admissible algebras. IEJA. January 2025;37(37):1-13. doi:10.24330/ieja.1607238
Chicago Facchini, Alberto. “On a Variety of Lie-Admissible Algebras”. International Electronic Journal of Algebra 37, no. 37 (January 2025): 1-13. https://doi.org/10.24330/ieja.1607238.
EndNote Facchini A (January 1, 2025) On a variety of Lie-admissible algebras. International Electronic Journal of Algebra 37 37 1–13.
IEEE A. Facchini, “On a variety of Lie-admissible algebras”, IEJA, vol. 37, no. 37, pp. 1–13, 2025, doi: 10.24330/ieja.1607238.
ISNAD Facchini, Alberto. “On a Variety of Lie-Admissible Algebras”. International Electronic Journal of Algebra 37/37 (January 2025), 1-13. https://doi.org/10.24330/ieja.1607238.
JAMA Facchini A. On a variety of Lie-admissible algebras. IEJA. 2025;37:1–13.
MLA Facchini, Alberto. “On a Variety of Lie-Admissible Algebras”. International Electronic Journal of Algebra, vol. 37, no. 37, 2025, pp. 1-13, doi:10.24330/ieja.1607238.
Vancouver Facchini A. On a variety of Lie-admissible algebras. IEJA. 2025;37(37):1-13.