Research Article
BibTex RIS Cite
Year 2014, Volume: 7 Issue: 2, 25 - 36, 30.10.2014
https://doi.org/10.36890/iejg.593980

Abstract

References

  • [1] Arslan, K. Thesis, The University of Leeds, 1993.
  • [2] Arslan, K., Aydın, Y., Öztürk, G. and Ugail, H., Biminimal Curves in Euclidean Spaces, International Electronic Journal of Geometry, Volume 2 No. 2 (2009), pp. 46-52.
  • [3] Arslan, K., Çelik, Y., Deszcz, R., Özgür, C., Submanifolds all of whose normal sections are W-curves, Far East J. Math. Sci. 5, 4 (1997), 537-544.
  • [4] Arslan, K., C¸ elik, Y. and Hacısalihoğlu, H., On harmonic Curvatures of a Frenet Curve, Common. Fac. Sci. Univ. Ank. Series A1 49 (2000), 15-23.
  • [5] Arslan, K. and Özgür C., Curves and surfaces of AW(k)-type, in: F. Defever (Ed.), J.M. Morvan (Ed.), I.V. Woestijne (Ed.), L. Verstraelen (Ed.), G. Zafindratafa (Ed.), Geometry and Topology of Submanifolds IX (Valenciennes/Lyan/Leuven, 1997), World. Sci. Publishing, 1999, pp. 21-26.
  • [6] Arslan, K. and Özgür, C., On normal sections of Veronese submanifold, Balkan J. Geom. Appl. 4, 1 (1999), 1-8.
  • [7] Arslan, K. and West, A., Product submanifolds with pointwise 3-planar normal sections, Glasgow Math. J. 37(1) (1995), 73–81.
  • [8] Ersoy, S., Masal, M. and Tosun, M., On Mannheim Partner Curves of AW(k)-type, arXiv:1001.1267.
  • [9] Gezgin, F., AW(k)-Type Curves, MSc. Thesis, Balıkesir University, 2005.
  • [10] Gray, A., Modern differential geometry of curves and surfaces, Crc Press, 1993.
  • [11] Güven¸c, S¸., Curves on Contact Pseudo-Hermitian 3-Manifolds, MSc. Thesis, Balıkesir Uni- versity, 2011.
  • [12] Inoguchi, J-I and Lee J-E., Almost contact curves in normal almost contact 3-manifolds, Accepted in J. Geom.
  • [13] Izumiya, S. and Takeuchi, N., New special curves and developable surfaces, Turkish J. Math. 28 (2004), no. 2, 153–163.
  • [14] Kılıc¸, B., Finite type curves and surfaces, PhD. Thesis, Hacettepe University, 2002.
  • [15] Kılıc¸, B. and Arslan, K., On curves and surfaces of AW(k) type, BAU¨ Fen Bil. Enst. Der., 6.1 (2004), 52-61.
  • [16] Körpınar T., Timelike Biharmonic Curves Of AW(k)-Type In The Lorentzian Heisenberg Group Heis3, Int. J. Open Problems Compt. Math., Vol. 4, No. 1, 184-190.
  • [17] Körpinar T. and Turhan, E., Spacelike Biharmonic Curves of AW(k)-type in the Lorentzian Heisenberg Group Heis3, Journal of Vectorial Relativity 5 (2010) 4, 1-7.
  • [18] Ku¨lahcı, M. and Ergüt, M., Bertrand curves of AW(k)-type in Lorentzian space, Nonlinear Anal. Theor. Meth. App. 70 (2009), No: 4, 1725-1731.
  • [19] Külahcı, M., Bekta¸s M. and Ergüt, M., Curves of AW(k)-type in 3-dimensional null cone, Phys. Lett., A 371 (2007), 275-277.
  • [20] Külahcı, M, Bekta¸s, M. and Ergüt M., On harmonic curvatures of null curves of AW(k)-type in Lorentzian space, Zeitschrift fu¨r Naturforschung, 63a: (2008), 248-252.
  • [21] Külahcı, M., Bekta¸s, M. and Ergüt, M., On harmonic curvatures of a Frenet curve in Lorentzian space, Chaos, Solitons and Fractals 41 (2009) 1668–1675.
  • [22] Külahcı, M. and Ergüt, M., Bertrand Curves of AW(k)-type in Lorentzian Space, Nonlinear Anal., 70 (2009), 1725-1731.
  • [23] Lee, J.E., On Legendre Curves in Contact Pseudo-Hermitian 3-manifolds, Bull. Aust. Math. Soc. 81 (2010), 156–164.
  • [24] Öğrenmiş, A.Ö ., On curvatures of a frenet curve in the pseudo - Galilean space G1, International Journal of the Physical Sciences, Vol. 5 (15), pp. 2363-2368.
  • [25] Öğrenmi¸s, A.O., Öztekin, H. and Ergüt, M., Some Properties of Mannheim Curves in Galilean and Pseudo - Galilean space, arXiv:1111.0424.
  • [26] Özgür, C. and Gu¨ven¸c, S¸., On Some Types of Slant Curves in Contact Pseudo-hermitian 3-manifolds, Ann. Polon. Math. 104 (2012), 217-228.
  • [27] Özgür, C. and Gezgin, F. On Some Curves of AW(k)-type, Differ. Geom. Dyn. Syst., 7 (2005), 74-80.
  • [28] Özgür, C. and Triphathi, M.M., On Legendre Curves in α-Sasakian Manifolds, Bull. Malays. Math. Sci. Soc. (2) 31 (1) (2008), 91-96.
  • [29] Öztekin, H., Null Bertrand Curves of the AW(k)-type in Minkowski 3-Space, e-Journal of New World Sciences Academy NWSA-Physical Sciences, 3A0054, 7, (3) (2012), 87-92.
  • [30] Struik, G. J., Lectures on Classical Differential Geometry, Dover, New York, NY, USA, 1988.
  • [31] Sun, J. and Pei, D., Null Cartan Bertrand curves of AW(k)-type in Minkowski 4-space, Physics Letters A 376 (2012) 2230-2233.
  • [32] Yoon, D.W., General helices of AW(k)-type in Lie group, Journal of Applied Mathematics, Accepted on 2 December 2012.

CURVES OF GENERALIZED AW(k)-TYPE IN EUCLIDEAN SPACES

Year 2014, Volume: 7 Issue: 2, 25 - 36, 30.10.2014
https://doi.org/10.36890/iejg.593980

Abstract


References

  • [1] Arslan, K. Thesis, The University of Leeds, 1993.
  • [2] Arslan, K., Aydın, Y., Öztürk, G. and Ugail, H., Biminimal Curves in Euclidean Spaces, International Electronic Journal of Geometry, Volume 2 No. 2 (2009), pp. 46-52.
  • [3] Arslan, K., Çelik, Y., Deszcz, R., Özgür, C., Submanifolds all of whose normal sections are W-curves, Far East J. Math. Sci. 5, 4 (1997), 537-544.
  • [4] Arslan, K., C¸ elik, Y. and Hacısalihoğlu, H., On harmonic Curvatures of a Frenet Curve, Common. Fac. Sci. Univ. Ank. Series A1 49 (2000), 15-23.
  • [5] Arslan, K. and Özgür C., Curves and surfaces of AW(k)-type, in: F. Defever (Ed.), J.M. Morvan (Ed.), I.V. Woestijne (Ed.), L. Verstraelen (Ed.), G. Zafindratafa (Ed.), Geometry and Topology of Submanifolds IX (Valenciennes/Lyan/Leuven, 1997), World. Sci. Publishing, 1999, pp. 21-26.
  • [6] Arslan, K. and Özgür, C., On normal sections of Veronese submanifold, Balkan J. Geom. Appl. 4, 1 (1999), 1-8.
  • [7] Arslan, K. and West, A., Product submanifolds with pointwise 3-planar normal sections, Glasgow Math. J. 37(1) (1995), 73–81.
  • [8] Ersoy, S., Masal, M. and Tosun, M., On Mannheim Partner Curves of AW(k)-type, arXiv:1001.1267.
  • [9] Gezgin, F., AW(k)-Type Curves, MSc. Thesis, Balıkesir University, 2005.
  • [10] Gray, A., Modern differential geometry of curves and surfaces, Crc Press, 1993.
  • [11] Güven¸c, S¸., Curves on Contact Pseudo-Hermitian 3-Manifolds, MSc. Thesis, Balıkesir Uni- versity, 2011.
  • [12] Inoguchi, J-I and Lee J-E., Almost contact curves in normal almost contact 3-manifolds, Accepted in J. Geom.
  • [13] Izumiya, S. and Takeuchi, N., New special curves and developable surfaces, Turkish J. Math. 28 (2004), no. 2, 153–163.
  • [14] Kılıc¸, B., Finite type curves and surfaces, PhD. Thesis, Hacettepe University, 2002.
  • [15] Kılıc¸, B. and Arslan, K., On curves and surfaces of AW(k) type, BAU¨ Fen Bil. Enst. Der., 6.1 (2004), 52-61.
  • [16] Körpınar T., Timelike Biharmonic Curves Of AW(k)-Type In The Lorentzian Heisenberg Group Heis3, Int. J. Open Problems Compt. Math., Vol. 4, No. 1, 184-190.
  • [17] Körpinar T. and Turhan, E., Spacelike Biharmonic Curves of AW(k)-type in the Lorentzian Heisenberg Group Heis3, Journal of Vectorial Relativity 5 (2010) 4, 1-7.
  • [18] Ku¨lahcı, M. and Ergüt, M., Bertrand curves of AW(k)-type in Lorentzian space, Nonlinear Anal. Theor. Meth. App. 70 (2009), No: 4, 1725-1731.
  • [19] Külahcı, M., Bekta¸s M. and Ergüt, M., Curves of AW(k)-type in 3-dimensional null cone, Phys. Lett., A 371 (2007), 275-277.
  • [20] Külahcı, M, Bekta¸s, M. and Ergüt M., On harmonic curvatures of null curves of AW(k)-type in Lorentzian space, Zeitschrift fu¨r Naturforschung, 63a: (2008), 248-252.
  • [21] Külahcı, M., Bekta¸s, M. and Ergüt, M., On harmonic curvatures of a Frenet curve in Lorentzian space, Chaos, Solitons and Fractals 41 (2009) 1668–1675.
  • [22] Külahcı, M. and Ergüt, M., Bertrand Curves of AW(k)-type in Lorentzian Space, Nonlinear Anal., 70 (2009), 1725-1731.
  • [23] Lee, J.E., On Legendre Curves in Contact Pseudo-Hermitian 3-manifolds, Bull. Aust. Math. Soc. 81 (2010), 156–164.
  • [24] Öğrenmiş, A.Ö ., On curvatures of a frenet curve in the pseudo - Galilean space G1, International Journal of the Physical Sciences, Vol. 5 (15), pp. 2363-2368.
  • [25] Öğrenmi¸s, A.O., Öztekin, H. and Ergüt, M., Some Properties of Mannheim Curves in Galilean and Pseudo - Galilean space, arXiv:1111.0424.
  • [26] Özgür, C. and Gu¨ven¸c, S¸., On Some Types of Slant Curves in Contact Pseudo-hermitian 3-manifolds, Ann. Polon. Math. 104 (2012), 217-228.
  • [27] Özgür, C. and Gezgin, F. On Some Curves of AW(k)-type, Differ. Geom. Dyn. Syst., 7 (2005), 74-80.
  • [28] Özgür, C. and Triphathi, M.M., On Legendre Curves in α-Sasakian Manifolds, Bull. Malays. Math. Sci. Soc. (2) 31 (1) (2008), 91-96.
  • [29] Öztekin, H., Null Bertrand Curves of the AW(k)-type in Minkowski 3-Space, e-Journal of New World Sciences Academy NWSA-Physical Sciences, 3A0054, 7, (3) (2012), 87-92.
  • [30] Struik, G. J., Lectures on Classical Differential Geometry, Dover, New York, NY, USA, 1988.
  • [31] Sun, J. and Pei, D., Null Cartan Bertrand curves of AW(k)-type in Minkowski 4-space, Physics Letters A 376 (2012) 2230-2233.
  • [32] Yoon, D.W., General helices of AW(k)-type in Lie group, Journal of Applied Mathematics, Accepted on 2 December 2012.
There are 32 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Kadri Arslan

Şaban Güvenç

Publication Date October 30, 2014
Published in Issue Year 2014 Volume: 7 Issue: 2

Cite

APA Arslan, K., & Güvenç, Ş. (2014). CURVES OF GENERALIZED AW(k)-TYPE IN EUCLIDEAN SPACES. International Electronic Journal of Geometry, 7(2), 25-36. https://doi.org/10.36890/iejg.593980
AMA Arslan K, Güvenç Ş. CURVES OF GENERALIZED AW(k)-TYPE IN EUCLIDEAN SPACES. Int. Electron. J. Geom. October 2014;7(2):25-36. doi:10.36890/iejg.593980
Chicago Arslan, Kadri, and Şaban Güvenç. “CURVES OF GENERALIZED AW(k)-TYPE IN EUCLIDEAN SPACES”. International Electronic Journal of Geometry 7, no. 2 (October 2014): 25-36. https://doi.org/10.36890/iejg.593980.
EndNote Arslan K, Güvenç Ş (October 1, 2014) CURVES OF GENERALIZED AW(k)-TYPE IN EUCLIDEAN SPACES. International Electronic Journal of Geometry 7 2 25–36.
IEEE K. Arslan and Ş. Güvenç, “CURVES OF GENERALIZED AW(k)-TYPE IN EUCLIDEAN SPACES”, Int. Electron. J. Geom., vol. 7, no. 2, pp. 25–36, 2014, doi: 10.36890/iejg.593980.
ISNAD Arslan, Kadri - Güvenç, Şaban. “CURVES OF GENERALIZED AW(k)-TYPE IN EUCLIDEAN SPACES”. International Electronic Journal of Geometry 7/2 (October 2014), 25-36. https://doi.org/10.36890/iejg.593980.
JAMA Arslan K, Güvenç Ş. CURVES OF GENERALIZED AW(k)-TYPE IN EUCLIDEAN SPACES. Int. Electron. J. Geom. 2014;7:25–36.
MLA Arslan, Kadri and Şaban Güvenç. “CURVES OF GENERALIZED AW(k)-TYPE IN EUCLIDEAN SPACES”. International Electronic Journal of Geometry, vol. 7, no. 2, 2014, pp. 25-36, doi:10.36890/iejg.593980.
Vancouver Arslan K, Güvenç Ş. CURVES OF GENERALIZED AW(k)-TYPE IN EUCLIDEAN SPACES. Int. Electron. J. Geom. 2014;7(2):25-36.

Cited By