Research Article
BibTex RIS Cite

A Note on f-biharmonic Legendre Curves in S-Space Forms

Year 2019, Volume: 12 Issue: 2, 260 - 267, 03.10.2019
https://doi.org/10.36890/iejg.554662

Abstract

In this paper, we study f-biharmonic Legendre curves in S-space forms. Our aim is to find curvature conditions for these curves and determine their types, i.e., a geodesic, a circle, a helix or a Frenet curve of osculating order r with specific curvature equations. We also give a proper example of f-biharmonic Legendre curves in the S-space form R^(2m+s)(−3s), with m = 2 and s = 2.

References

  • Blair, D. E.: Geometry of manifolds with structural group U(n) × O(s). J. Differential Geometry 4,155-167 (1970).
  • Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Boston. Birkhauser 2002.
  • Cabrerizo, J. L., Fernandez, L. M., Fernandez M.: The curvature of submanifolds of an S-space form.Acta Math. Hungar. 62, 373-383 (1993).
  • Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of S3. Internat. J. Math. 12, 867-876(2001).
  • Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds in spheres. Israel J. Math. 130, 109-123(2002).
  • Chen, B.Y.: A report on submanifolds of finite type. Soochow J. Math. 22, 117-337 (1996).
  • Eells, Jr. J., Sampson, J. H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109–160(1964).
  • Fetcu, D.: Biharmonic Legendre curves in Sasakian space forms. J. Korean Math. Soc. 45, 393-404(2008).
  • Fetcu, D., Oniciuc, C.: Explicit formulas for biharmonic submanifolds in Sasakian space forms. PacificJ. Math. 240, 85-107 (2009).
  • Fetcu, D., Loubeau, E., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of CPn. Math. Z. 266,505–531 (2010).
  • Güvenç, ޸. Özgür, C.: On the characterizations of f-biharmonic Legendre curves in Sasakian spaceforms. Filomat 31, no. 3, 639–648 (2017).
  • Hasegawa, I., Okuyama, Y., Abe, T.: On p-th Sasakian manifolds. J. Hokkaido Univ. Ed. Sect. II A,37, no. 1, 1–16, (1986).
  • Jiang, G. Y.: 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser.A, 7, 389-402 (1986).
  • Kim, J. S., Dwivedi, M. K., Tripathi, M. M.: Ricci curvature of integral submanifolds of an S-spaceform. Bull. Korean Math. Soc. 44 , 395–406 (2007).
  • Lu, W. J.: On f-biharmonic maps between Riemannian manifolds. arXiv:1305.5478 (2013).
  • Nakagawa, H.: On framed f-manifolds. Kodai Math. Sem. Rep. 18, 293-306 (1966).
  • Ou, Y.L.: On f-biharmonic maps and f-biharmonic submanifolds. arXiv:1306.3549v1.
  • Ou, Y.L.: p-Harmonic morphisms, biharmonic morphisms,and nonharmonic biharmonic maps. J. Geom.Phys. 56, 358-374 (2006).
  • Özgür, C., Güvenç, ޸.: On Biharmonic Legendre Curves in S-Space Forms. Turkish Journal of Mathematics,Turk. J. Math. 38 (2014), 454-461.
  • Vanzura, J.: Almost r-contact structures. Ann. Scuola Norm. Sup. Pisa (3) 26, 97-115 (1972).
  • Yano, K., Kon, M.: Structures on Manifolds. Series in Pure Mathematics, 3. Singapore. World ScientificPublishing Co. 1984.
Year 2019, Volume: 12 Issue: 2, 260 - 267, 03.10.2019
https://doi.org/10.36890/iejg.554662

Abstract

References

  • Blair, D. E.: Geometry of manifolds with structural group U(n) × O(s). J. Differential Geometry 4,155-167 (1970).
  • Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Boston. Birkhauser 2002.
  • Cabrerizo, J. L., Fernandez, L. M., Fernandez M.: The curvature of submanifolds of an S-space form.Acta Math. Hungar. 62, 373-383 (1993).
  • Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of S3. Internat. J. Math. 12, 867-876(2001).
  • Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds in spheres. Israel J. Math. 130, 109-123(2002).
  • Chen, B.Y.: A report on submanifolds of finite type. Soochow J. Math. 22, 117-337 (1996).
  • Eells, Jr. J., Sampson, J. H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109–160(1964).
  • Fetcu, D.: Biharmonic Legendre curves in Sasakian space forms. J. Korean Math. Soc. 45, 393-404(2008).
  • Fetcu, D., Oniciuc, C.: Explicit formulas for biharmonic submanifolds in Sasakian space forms. PacificJ. Math. 240, 85-107 (2009).
  • Fetcu, D., Loubeau, E., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of CPn. Math. Z. 266,505–531 (2010).
  • Güvenç, ޸. Özgür, C.: On the characterizations of f-biharmonic Legendre curves in Sasakian spaceforms. Filomat 31, no. 3, 639–648 (2017).
  • Hasegawa, I., Okuyama, Y., Abe, T.: On p-th Sasakian manifolds. J. Hokkaido Univ. Ed. Sect. II A,37, no. 1, 1–16, (1986).
  • Jiang, G. Y.: 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser.A, 7, 389-402 (1986).
  • Kim, J. S., Dwivedi, M. K., Tripathi, M. M.: Ricci curvature of integral submanifolds of an S-spaceform. Bull. Korean Math. Soc. 44 , 395–406 (2007).
  • Lu, W. J.: On f-biharmonic maps between Riemannian manifolds. arXiv:1305.5478 (2013).
  • Nakagawa, H.: On framed f-manifolds. Kodai Math. Sem. Rep. 18, 293-306 (1966).
  • Ou, Y.L.: On f-biharmonic maps and f-biharmonic submanifolds. arXiv:1306.3549v1.
  • Ou, Y.L.: p-Harmonic morphisms, biharmonic morphisms,and nonharmonic biharmonic maps. J. Geom.Phys. 56, 358-374 (2006).
  • Özgür, C., Güvenç, ޸.: On Biharmonic Legendre Curves in S-Space Forms. Turkish Journal of Mathematics,Turk. J. Math. 38 (2014), 454-461.
  • Vanzura, J.: Almost r-contact structures. Ann. Scuola Norm. Sup. Pisa (3) 26, 97-115 (1972).
  • Yano, K., Kon, M.: Structures on Manifolds. Series in Pure Mathematics, 3. Singapore. World ScientificPublishing Co. 1984.
There are 21 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Şaban Güvenç 0000-0001-6254-4693

Publication Date October 3, 2019
Acceptance Date September 10, 2019
Published in Issue Year 2019 Volume: 12 Issue: 2

Cite

APA Güvenç, Ş. (2019). A Note on f-biharmonic Legendre Curves in S-Space Forms. International Electronic Journal of Geometry, 12(2), 260-267. https://doi.org/10.36890/iejg.554662
AMA Güvenç Ş. A Note on f-biharmonic Legendre Curves in S-Space Forms. Int. Electron. J. Geom. October 2019;12(2):260-267. doi:10.36890/iejg.554662
Chicago Güvenç, Şaban. “A Note on F-Biharmonic Legendre Curves in S-Space Forms”. International Electronic Journal of Geometry 12, no. 2 (October 2019): 260-67. https://doi.org/10.36890/iejg.554662.
EndNote Güvenç Ş (October 1, 2019) A Note on f-biharmonic Legendre Curves in S-Space Forms. International Electronic Journal of Geometry 12 2 260–267.
IEEE Ş. Güvenç, “A Note on f-biharmonic Legendre Curves in S-Space Forms”, Int. Electron. J. Geom., vol. 12, no. 2, pp. 260–267, 2019, doi: 10.36890/iejg.554662.
ISNAD Güvenç, Şaban. “A Note on F-Biharmonic Legendre Curves in S-Space Forms”. International Electronic Journal of Geometry 12/2 (October 2019), 260-267. https://doi.org/10.36890/iejg.554662.
JAMA Güvenç Ş. A Note on f-biharmonic Legendre Curves in S-Space Forms. Int. Electron. J. Geom. 2019;12:260–267.
MLA Güvenç, Şaban. “A Note on F-Biharmonic Legendre Curves in S-Space Forms”. International Electronic Journal of Geometry, vol. 12, no. 2, 2019, pp. 260-7, doi:10.36890/iejg.554662.
Vancouver Güvenç Ş. A Note on f-biharmonic Legendre Curves in S-Space Forms. Int. Electron. J. Geom. 2019;12(2):260-7.