Research Article
BibTex RIS Cite

Year 2025, Volume: 18 Issue: 2, 437 - 447

Abstract

References

  • Aniszewska, D., Rybaczuk, M.: Analysis of the multiplicative Lorentz system., Chaos, Solitons and Fractals. 25 (1), 79–90 (2005). https://doi.org/10.1016/j.chaos.2004.09.060
  • Aniszewska, D.: Multiplicative Runge-Kutta methods. Nonlinear Dyn. 50 (1), 265-272 (2007). https://doi.org/10.1007/s11071-006-9156-3
  • Aydın, M. E., Has, A., Yılmaz, B.:A non-Newtonian approach in differential geometry of curves: multiplicative rectifying curves. The Korean Mathematical Society. 849-866 (2024). https://doi.org/10.1088/1402-4896/ad32b7
  • Aydın, M. E., Has, A., Yılmaz, B.:Multiplicative rectifying submanifolds of multiplicative Euclidean space. Mathematical Methods in the Applied Sciences. 48 (1), 329-339 (2025). https://doi.org/10.1002/mma.10329
  • Bashirov, A. E., Rıza M.:On complex multiplicative differentiation. TWMS Journal of Applied and Engineering Mathematics. 1 (1), 75-85 (2011).
  • Bashirov, A.E., Kurpınar E.M., Özyapıcı, A.: Multiplicative calculus and its applications. J.Math. Anal. Appl. 337 (1), 36–48 (2008). https://doi.org/10.1016/j.jmaa.2007.03.081
  • Campbell, D.:Multiplicative calculus and student projects. Primus. 9 (4), 327-332 (1999). https://doi.org/10.1080/10511979908965938
  • Ceyhan, H., Özdemir, Z., Gök I.: Multiplicative generalized tube surfaces with multiplicative quaternions algebra. Mathematical Methods in the Applied Sciences. 47 (11), 9157-9168 (2024). https://doi.org/10.1002/mma.10065
  • Do Carmo, M. P.: Differential Geometry of Curves and Surfaces: Revised and Updated Second Edition. Courier Dover Publications (2016).
  • Farouki, R. T.: The approximation of non-degenerate offset surface surfaces. Comput. Aided Geom. Design. 3, 15-43 (1986). https://doi.org/10.1016/0167-8396(86)90022-1
  • Georgiev, S. G.: Multiplicative Differential Geometry. Chapman and Hall/CRC, New York, USA (2022).
  • Georgiev, S. G., Zennir, K.: Multiplicative Differential Calculus. Chapman and Hall/CRC, New York, USA (2022).
  • Has, A., Yılmaz, B., Yıldırım, H.:A non-Newtonian perspective on multiplicative Lorentz–Minkowski space Mathematical Methods in the Applied Sciences. 47 (18), 13875-13888 (2024). https://doi.org/10.1002/mma.10243
  • Has, A., Yılmaz, B.: On non-Newtonian helices in multiplicative Euclidean space. Fundamentals of Contemporary Mathematical Sciences. 6 (2), 196-217 (2025). https://doi.org/10.54974/fcmathsci.1644427
  • Kasap, E., Yuce, S., Kuruoglu, N.: The involute-evolute offset surfaces of ruled surfaces. Iranian Journal of Science and Technology. 33 (A2), 195-201 (2009). https://doi.org/10.22099/ijsts.2009.2215
  • Kasap, E., Kuruoglu, N.: On the some new characteristic properties of the pair of the Bertrand ruled surfaces. Pure Appl. Math. Sci. 53, 73-79 (2001).
  • Orbay, K., Kasap, E., Aydemir, I.: Mannheim offset surfaces of ruled surfaces. Mathematical Problems in Enginnering. (2009). https://doi.org/10.1155/2009/160917
  • Ravani, B., Ku, T.S.: Bertrand offset surfaces of ruled and developable surfaces. Computer-Aided Design. 23, 145-152 (1991). https://doi.org/10.1016/0010-4485(91)90005-H
  • Stanley, D.:A multiplicative calculus. Primus IX. 4, 310-326 (1999). https://doi.org/10.1080/10511979908965937

Effect of Multiplicative Calculus on Special Ruled Surface Pairs

Year 2025, Volume: 18 Issue: 2, 437 - 447

Abstract

This paper explores the application and advantages of multiplicative analysis in surface theory. Unlike additive methods, multiplicative analysis focuses on the interaction of variables through product-based relationships, offering a more accurate representation in contexts involving exponential growth, ratios, and scaling. One key advantage of multiplicative analysis is its ability to simplify complex problems by exploiting factorization and invariance properties, enabling more efficient problem-solving strategies. This study highlights both theoretical foundations and practical benefits of using multiplicative approaches in special ruled surface pairs for mathematical research. Hence, we define new special ruled surface pairs called mul-Bertrand, mul-involute-evolute and mul-Mannheim ruled surface pairs. Moreover, some illustrative examples are given to validate the results.

References

  • Aniszewska, D., Rybaczuk, M.: Analysis of the multiplicative Lorentz system., Chaos, Solitons and Fractals. 25 (1), 79–90 (2005). https://doi.org/10.1016/j.chaos.2004.09.060
  • Aniszewska, D.: Multiplicative Runge-Kutta methods. Nonlinear Dyn. 50 (1), 265-272 (2007). https://doi.org/10.1007/s11071-006-9156-3
  • Aydın, M. E., Has, A., Yılmaz, B.:A non-Newtonian approach in differential geometry of curves: multiplicative rectifying curves. The Korean Mathematical Society. 849-866 (2024). https://doi.org/10.1088/1402-4896/ad32b7
  • Aydın, M. E., Has, A., Yılmaz, B.:Multiplicative rectifying submanifolds of multiplicative Euclidean space. Mathematical Methods in the Applied Sciences. 48 (1), 329-339 (2025). https://doi.org/10.1002/mma.10329
  • Bashirov, A. E., Rıza M.:On complex multiplicative differentiation. TWMS Journal of Applied and Engineering Mathematics. 1 (1), 75-85 (2011).
  • Bashirov, A.E., Kurpınar E.M., Özyapıcı, A.: Multiplicative calculus and its applications. J.Math. Anal. Appl. 337 (1), 36–48 (2008). https://doi.org/10.1016/j.jmaa.2007.03.081
  • Campbell, D.:Multiplicative calculus and student projects. Primus. 9 (4), 327-332 (1999). https://doi.org/10.1080/10511979908965938
  • Ceyhan, H., Özdemir, Z., Gök I.: Multiplicative generalized tube surfaces with multiplicative quaternions algebra. Mathematical Methods in the Applied Sciences. 47 (11), 9157-9168 (2024). https://doi.org/10.1002/mma.10065
  • Do Carmo, M. P.: Differential Geometry of Curves and Surfaces: Revised and Updated Second Edition. Courier Dover Publications (2016).
  • Farouki, R. T.: The approximation of non-degenerate offset surface surfaces. Comput. Aided Geom. Design. 3, 15-43 (1986). https://doi.org/10.1016/0167-8396(86)90022-1
  • Georgiev, S. G.: Multiplicative Differential Geometry. Chapman and Hall/CRC, New York, USA (2022).
  • Georgiev, S. G., Zennir, K.: Multiplicative Differential Calculus. Chapman and Hall/CRC, New York, USA (2022).
  • Has, A., Yılmaz, B., Yıldırım, H.:A non-Newtonian perspective on multiplicative Lorentz–Minkowski space Mathematical Methods in the Applied Sciences. 47 (18), 13875-13888 (2024). https://doi.org/10.1002/mma.10243
  • Has, A., Yılmaz, B.: On non-Newtonian helices in multiplicative Euclidean space. Fundamentals of Contemporary Mathematical Sciences. 6 (2), 196-217 (2025). https://doi.org/10.54974/fcmathsci.1644427
  • Kasap, E., Yuce, S., Kuruoglu, N.: The involute-evolute offset surfaces of ruled surfaces. Iranian Journal of Science and Technology. 33 (A2), 195-201 (2009). https://doi.org/10.22099/ijsts.2009.2215
  • Kasap, E., Kuruoglu, N.: On the some new characteristic properties of the pair of the Bertrand ruled surfaces. Pure Appl. Math. Sci. 53, 73-79 (2001).
  • Orbay, K., Kasap, E., Aydemir, I.: Mannheim offset surfaces of ruled surfaces. Mathematical Problems in Enginnering. (2009). https://doi.org/10.1155/2009/160917
  • Ravani, B., Ku, T.S.: Bertrand offset surfaces of ruled and developable surfaces. Computer-Aided Design. 23, 145-152 (1991). https://doi.org/10.1016/0010-4485(91)90005-H
  • Stanley, D.:A multiplicative calculus. Primus IX. 4, 310-326 (1999). https://doi.org/10.1080/10511979908965937
There are 19 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Zehra Nur Koçak 0009-0001-1631-2063

Emel Karaca 0000-0003-0703-939X

Early Pub Date October 13, 2025
Publication Date October 15, 2025
Submission Date May 9, 2025
Acceptance Date July 16, 2025
Published in Issue Year 2025 Volume: 18 Issue: 2

Cite

APA Koçak, Z. N., & Karaca, E. (2025). Effect of Multiplicative Calculus on Special Ruled Surface Pairs. International Electronic Journal of Geometry, 18(2), 437-447.
AMA Koçak ZN, Karaca E. Effect of Multiplicative Calculus on Special Ruled Surface Pairs. Int. Electron. J. Geom. October 2025;18(2):437-447.
Chicago Koçak, Zehra Nur, and Emel Karaca. “Effect of Multiplicative Calculus on Special Ruled Surface Pairs”. International Electronic Journal of Geometry 18, no. 2 (October 2025): 437-47.
EndNote Koçak ZN, Karaca E (October 1, 2025) Effect of Multiplicative Calculus on Special Ruled Surface Pairs. International Electronic Journal of Geometry 18 2 437–447.
IEEE Z. N. Koçak and E. Karaca, “Effect of Multiplicative Calculus on Special Ruled Surface Pairs”, Int. Electron. J. Geom., vol. 18, no. 2, pp. 437–447, 2025.
ISNAD Koçak, Zehra Nur - Karaca, Emel. “Effect of Multiplicative Calculus on Special Ruled Surface Pairs”. International Electronic Journal of Geometry 18/2 (October2025), 437-447.
JAMA Koçak ZN, Karaca E. Effect of Multiplicative Calculus on Special Ruled Surface Pairs. Int. Electron. J. Geom. 2025;18:437–447.
MLA Koçak, Zehra Nur and Emel Karaca. “Effect of Multiplicative Calculus on Special Ruled Surface Pairs”. International Electronic Journal of Geometry, vol. 18, no. 2, 2025, pp. 437-4.
Vancouver Koçak ZN, Karaca E. Effect of Multiplicative Calculus on Special Ruled Surface Pairs. Int. Electron. J. Geom. 2025;18(2):437-4.