Derleme
BibTex RIS Kaynak Göster

Düşük veya Yüksek Karbonhidratlı Diyetlerin Beyin, Beyin-Bağırsak Aksı ve Bilişsel İşlevler Üzerine Etkisi

Yıl 2022, , 1070 - 1083, 31.12.2022
https://doi.org/10.38079/igusabder.1140592

Öz

İntestinal mikrobiyota sağlığın korunmasında anahtar bir rol oynamaktadır. Mikrobiyota üzerine önemli etkileri olan beslenme, beyin-bağırsak aksındaki bozuklukları hafifletmek, nöroinflamasyonu ve bilişsel bozulmayı iyileştirmek için büyük önem taşımaktadır. Bağırsak bakterileri, diyetle alınan besin ögelerini kullanarak çeşitli metabolitleri (örn., kısa zincirli yağ asitleri, amino asitler, vitaminler) üretebilme yeteneğine sahiptir. Üretilen bu metabolitler, periferik sinir sistemi, enteroendokrin hücreler ve merkezi sinir sistemine sinyal gönderen immün hücreler aracılığıyla beyin fonksiyonlarını ve bilişsel davranış değişikliğini etkilemektedir. Karbonhidratlar, çoğu durumda intestinal mikrobiyota tarafından substrat olarak kullanılmakta ve fermente edilmektedir. Karbonhidratların bu etkileri kimyasal yapılarına, sindirilmeden kolona ulaşıp ulaşamamalarına ve konağın karbonhidratı enerji kaynağı olarak kullanabilme yeteneğine bağlıdır. Karbonhidratın türü ve miktarı mikrobiyota, beyin bağırsak aksı ve bilişsel işlevlerdeki etkiyi belirleyen ana faktörlerden biridir. Bu derlemede, düşük veya yüksek karbonhidrat içeren diyetlerin beyin-bağırsak aksı ve bilişsel fonksiyonlara olan etkilerinin güncel literatür verileri ışığında değerlendirilmesi amaçlanmıştır.

Kaynakça

  • Bermúdez-Humarán LG, Salinas E, Ortiz GG, Ramirez-Jirano LJ, Morales JA, Bitzer-Quintero OK. From probiotics to psychobiotics: live beneficial bacteria which act on the brain-gut axis. Nutrients. 2019;11(4):890-911. doi:10.3390/nu11040890.
  • Cheng X, Zheng J, Lin A, et al. A review: Roles of carbohydrates in human diseases through regulation of imbalanced intestinal microbiota. Journal of Functional Foods. 2020;74:104197. doi:10.1016/j.jff.2020.104197.
  • Shi H, Wang Q, Zheng M, et al. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. Journal of Neuroinflammation. 2020;17(77):1-21. doi:10.1186/s12974-020-01760-1.
  • Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: regulation by the microbiome. Neurobiology of Stress. 2017;7:124-136. doi:10.1016/j.ynstr.2017.03.001.
  • Agustí A, García-Pardo MP, López-Almela I, et al. Interplay between the gut-brain axis, obesity and cognitive function. Frontiers in Neuroscience. 2018;12:155. doi:10.3389/fnins.2018.00155.
  • Moloney RD, Desbonnet L, Clarke G, Dinan TG, Cryan JF. The microbiome: stress, health and disease. Mammalian Genome. 2014;25(1):49-74. doi:10.1007/s00335-013-9488-5.
  • Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell. 2016;167(4):915-932. doi:10.1016/j.cell.2016.10.027.
  • Akbari E, Asemi Z, Daneshvar Kakhaki R, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: A randomized, double-blind and controlled trial. Frontiers in Aging Neuroscience. 2016;8:256. doi:10.3389/fnagi.2016.00256.
  • Hwang YH, Park S, Paik JW, et al. Efficacy and safety of Lactobacillus plantarum C29-fermented soybean (DW2009) in individuals with mild cognitive impairment: A 12-week, multi-center, randomized, double-blind, placebo-controlled clinical trial. Nutrients. 2019;11(2):305. doi:10.3390/nu11020305.
  • Lv T, Ye M, Luo F, et al. Probiotics treatment improves cognitive impairment in patients and animals: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews. 2021;120:159-172. doi:10.1016/j.neubiorev.2020.10.027.
  • Eastwood J, Walton G, Van Hemert S, Williams C, Lamport D. The effect of probiotics on cognitive function across the human lifespan: A systematic review. Neuroscience & Biobehavioral Reviews. 2021;128:311-327. doi:10.1016/j.neubiorev.2021.06.032.
  • Clark A, Mach N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: A systematic review for athletes. Journal of the International Society of Sports Nutrition. 2016;13(1):1-21. doi:10.1186/s12970-016-0155-6.
  • Çimen F, Polat H, Ekici L. Polifenollerin bağırsak mikrobiyota kompozisyonunu düzenleyici ve nöroprotektif etkileri. Akademik Gıda. 2020;18(2):190-208. doi:10.24323/akademik-gida.758838.
  • Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences. 2011;108(38):16050-16055. doi:10.1073/pnas.1102999108.
  • Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141(2):599-609. doi:10.1053/j.gastro.2011.04.052.
  • Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: Diet, microbiome, and neuropsychiatry. Translational Research. 2017;179:223-244. doi:10.1016/j.trsl.2016.10.002.
  • Ezra-Nevo G, Henriques SF, Ribeiro C. The diet-microbiome tango: how nutrients lead the gut brain axis. Current Opinion in Neurobiology. 2020;62:122-132. doi:10.1016/j.conb.2020.02.005.
  • Berding K, Vlckova K, Marx W, et al. Diet and the microbiota–gut–brain axis: sowing the seeds of good mental health. Advances in Nutrition. 2021;12(4):1239-1285. doi:10.1093/advances/nmaa181.
  • Singh RK, Chang HW, Yan DI, et al. Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine. 2017;15(1):73. doi:10.1186/s12967-017-1175-y.
  • Gibson EL, Barr S, Jeanes YM. Habitual fat intake predicts memory function in younger women. Frontiers in Human Neuroscience. 2013;7:838. doi:10.3389/fnhum.2013.00838.
  • Jones EK, Sünram-Lea SI, Wesnes KA. Acute ingestion of different macronutrients differentially enhances aspects of memory and attention in healthy young adults. Biological Psychology. 2012;89(2):477-486. doi:10.1016/j.biopsycho.2011.12.017.
  • Bourre JM. Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1: Micronutrients. Journal of Nutrition Health and Aging. 2006;10(5):377-385.
  • Wahl D, Cogger VC, Solon-Biet SM, et al. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Research Reviews. 2016;31:80-92. doi:10.1016/j.arr.2016.06.006.
  • Muralidharan J, Galiè S, Hernández-Alonso P, Bulló M, Salas-Salvadó J. Plant-based fat, dietary patterns rich in vegetable fat and gut microbiota modulation. Frontiers in Nutrition. 2019;6:157. doi:10.3389/fnut.2019.00157.
  • Eskelinen MH, Ngandu T, Helkala EL, et al. Fat intake at midlife and cognitive impairment later in life: A population‐based CAIDE study. International Journal of Geriatric Psychiatry. 2008;23(7):741-747. doi:10.1002/gps.1969.
  • Wang SZ, Yu YJ, Adeli K. Role of gut microbiota in neuroendocrine regulation of carbohydrate and lipid metabolism via the microbiota-gut-brain-liver axis. Microorganisms. 2020;8(4):527. doi:10.3390/microorganisms8040527.
  • Leigh SJ, Morris MJ. Diet, inflammation and the gut microbiome: Mechanisms for obesity-associated cognitive impairment. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2020;1866(6):165767. doi:10.1016/j.bbadis.2020.165767.
  • Spencer SJ, D'Angelo H, Soch A, Watkins LR, Maier SF, Barrientos RM. High-fat diet and aging interact to produce neuroinflammation and impair hippocampal-and amygdalar-dependent memory. Neurobiology of Aging. 2017;58:88-101. doi:10.1016/j.neurobiolaging.2017.06.014.
  • Camer D, Yu Y, Szabo A, Fernandez F, Dinh CH, Huang XF. Bardoxolone methyl prevents high-fat diet-induced alterations in prefrontal cortex signalling molecules involved in recognition memory. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2015;59:68-75. doi:10.1016/j.pnpbp.2015.01.004.
  • Fernstrom JD, Fernstrom MH. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. The Journal of Nutrition. 2007;37(6):1539S-1547S. doi:10.1093/jn/137.6.1539S.
  • Jakobsen LH, Kondrup J, Zellner M, Tetens I, Roth E. Effect of a high protein meat diet on muscle and cognitive functions: A randomised controlled dietary intervention trial in healthy men. Clinical Nutrition. 2011;30(3):303-311. doi:10.1016/j.clnu.2010.12.010.
  • Cai J, Chen Z, Wu W, Lin Q, Liang Y. High animal protein diet and gut microbiota in human health. Critical Reviews in Food Science and Nutrition. 2021:1-13. doi:10.1080/10408398.2021.1898336.
  • Kumar J, Rani K, Datt C. Molecular link between dietary fibre, gut microbiota and health. Molecular Biology Reports. 2020;47:6229-6237. doi:10.1007/s11033-020-05611-3.
  • Chassard C, Lacroix C. Carbohydrates and the human gut microbiota. Current Opinion in Clinical Nutrition & Metabolic Care. 2013;16(4):453-460. doi:10.1097/MCO.0b013e3283619e63.
  • İpek KD, Yılmaz HÖ. Diyetin ve karbonhidrat içeriğinin mikrobiyotaya etkisi. Cumhuriyet Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi. 2018;3(2):29-39.
  • Simpson HL, Campbell BJ. Review article: Dietary fibre–microbiota interactions. Alimentary Pharmacology & Therapeutics. 2015;42(2):158-179. doi:10.1111/apt.13248.
  • Liu L, Huh JR, Shah K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine. 2022;77:1-11. doi:10.1016/j.ebiom.2022.103908.
  • Walker AW, Ince J, Duncan SH, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. The ISME Journal. 2011;5(2):220-230. doi:10.1038/ISMEJ.2010.118.
  • Hawkins MA, Keirns NG, Helms Z. Carbohydrates and cognitive function. Current Opinion in Clinical Nutrition & Metabolic Care. 2018;21(4):302-307. doi:10.1097/MCO.0000000000000471.
  • Muth AK, Park SQ. The impact of dietary macronutrient intake on cognitive function and the brain. Clinical Nutrition. 2021;40(6):3999-4010. doi:10.1016/j.clnu.2021.04.043.
  • Sun W, Li S, Chen C, Lu Z, Zhang D. Dietary fiber intake is positively related with cognitive function in US older adults. Journal of Functional Foods. 2022;90:104986. doi:10.1016/j.jff.2022.104986.
  • Liu X, Li X, Xia B, et al. High-fiber diet mitigates maternal obesity-induced cognitive and social dysfunction in the offspring via gut-brain axis. Cell Metabolism. 2021;33(5):923-938. doi:10.1016/j.cmet.2021.02.002.
  • Russell WR, Gratz SW, Duncan SH, et al. High-protein, reduced carbohydrate weight loss diets promote metabolite profiles promote metabolite profiles likely to be detrimental to colonic health. The American Journal of Clinical Nutrition. 2011;93(5):1062-1072. doi:10.3945/ajcn.110.002188.
  • Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Applied and Environmental Microbiology. 2007;73(4):1073-1078. doi:10.1128/AEM.02340-06.
  • Akansel MG. Sağlıklı bireylerde ketojenik diyetin bağırsak mikrobiyotası üzerindeki etkisinin değerlendirilmesi. [doktora tezi]. İstanbul, Türkiye: Beslenme ve Diyetetik Ana Bilim Dalı, Sağlık Bilimleri Enstitüsü; 2021.
  • Iacovide S, Goble D, Paterson B, Meiring RM. Three consecutive weeks of nutritional ketosis has no effect on cognitive function, sleep, and mood compared with a high-carbohydrate, low-fat diet in healthy individuals: A randomized, crossover, controlled trial, The American Journal of Clinical Nutrition. 2019;110(2):349–357. doi:10.1093/ajcn/nqz073.
  • Makris A, Darcey VL, Rosenbaum DL, et al. Similar effects on cognitive performance during high-and low-carbohydrate obesity treatment. Nutrition & Diabetes. 2013;3(9):e89. doi:10.1038/nutd.2013.29.
  • Mohorko N, Černelič-Bizjak M, Poklar-Vatovec T, et al. Weight loss, improved physical performance, cognitive function, eating behavior, and metabolic profile in a 12-week ketogenic diet in obese adults. Nutrition Research. 2019;62:64-77. doi:10.1016/j.nutres.2018.11.007.
  • Krikorian R, Shidler MD, Dangelo K, Couch SC, Benoit SC, Clegg DJ. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiology of Aging. 2012;33(2):419-425. doi:10.1016/j.neurobiolaging.2010.10.006.
  • Neth BJ, Mintz A, Whitlow C, et al. Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer’s disease: A pilot study. Neurobiology of Aging. 2020;86:54-63. doi:10.1016/j.neurobiolaging.2019.09.015Get.
  • Vinciguerra F, Graziano M, Hagnäs M, Frittitta L, Tumminia A. Influence of the mediterranean and ketogenic diets on cognitive status and decline: A narrative review. Nutrients. 2020;12(4):1019. doi:10.3390/nu12041019.

Effect of Low- or High-Carbohydrate Diets on Brain, Brain-Gut Axis, and Cognitive Functions

Yıl 2022, , 1070 - 1083, 31.12.2022
https://doi.org/10.38079/igusabder.1140592

Öz

The intestinal microbiota plays a key role in maintaining health. Nutrition is of great importance for alleviating disorders in the gut-brain axis, improving neuroinflammation and cognitive impairment. Intestinal bacteria have the ability to produce various metabolites (eg, short-chain fatty acids, amino acids, vitamins) using dietary nutrients. These metabolites produced affect brain functions and cognitive behavior through the peripheral nervous system, enteroendocrine cells and immune cells that send signals to the central nervous system. Carbohydrates are, in most cases, used as substrate and fermented by the intestinal microbiota. These effects of carbohydrates depend on their chemical structure, whether they can reach the colon without digested, and the host's ability to use carbohydrates as an energy source. The type and amount of carbohydrate is one of the main factors determining the effect on microbiota, brain-gut axis and cognitive functions. The aim of this review is to evaluate the effects of low or high carbohydrate diets on gut-brain axis and cognitive functions in the light of current literature.

Kaynakça

  • Bermúdez-Humarán LG, Salinas E, Ortiz GG, Ramirez-Jirano LJ, Morales JA, Bitzer-Quintero OK. From probiotics to psychobiotics: live beneficial bacteria which act on the brain-gut axis. Nutrients. 2019;11(4):890-911. doi:10.3390/nu11040890.
  • Cheng X, Zheng J, Lin A, et al. A review: Roles of carbohydrates in human diseases through regulation of imbalanced intestinal microbiota. Journal of Functional Foods. 2020;74:104197. doi:10.1016/j.jff.2020.104197.
  • Shi H, Wang Q, Zheng M, et al. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. Journal of Neuroinflammation. 2020;17(77):1-21. doi:10.1186/s12974-020-01760-1.
  • Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: regulation by the microbiome. Neurobiology of Stress. 2017;7:124-136. doi:10.1016/j.ynstr.2017.03.001.
  • Agustí A, García-Pardo MP, López-Almela I, et al. Interplay between the gut-brain axis, obesity and cognitive function. Frontiers in Neuroscience. 2018;12:155. doi:10.3389/fnins.2018.00155.
  • Moloney RD, Desbonnet L, Clarke G, Dinan TG, Cryan JF. The microbiome: stress, health and disease. Mammalian Genome. 2014;25(1):49-74. doi:10.1007/s00335-013-9488-5.
  • Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. The central nervous system and the gut microbiome. Cell. 2016;167(4):915-932. doi:10.1016/j.cell.2016.10.027.
  • Akbari E, Asemi Z, Daneshvar Kakhaki R, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: A randomized, double-blind and controlled trial. Frontiers in Aging Neuroscience. 2016;8:256. doi:10.3389/fnagi.2016.00256.
  • Hwang YH, Park S, Paik JW, et al. Efficacy and safety of Lactobacillus plantarum C29-fermented soybean (DW2009) in individuals with mild cognitive impairment: A 12-week, multi-center, randomized, double-blind, placebo-controlled clinical trial. Nutrients. 2019;11(2):305. doi:10.3390/nu11020305.
  • Lv T, Ye M, Luo F, et al. Probiotics treatment improves cognitive impairment in patients and animals: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews. 2021;120:159-172. doi:10.1016/j.neubiorev.2020.10.027.
  • Eastwood J, Walton G, Van Hemert S, Williams C, Lamport D. The effect of probiotics on cognitive function across the human lifespan: A systematic review. Neuroscience & Biobehavioral Reviews. 2021;128:311-327. doi:10.1016/j.neubiorev.2021.06.032.
  • Clark A, Mach N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: A systematic review for athletes. Journal of the International Society of Sports Nutrition. 2016;13(1):1-21. doi:10.1186/s12970-016-0155-6.
  • Çimen F, Polat H, Ekici L. Polifenollerin bağırsak mikrobiyota kompozisyonunu düzenleyici ve nöroprotektif etkileri. Akademik Gıda. 2020;18(2):190-208. doi:10.24323/akademik-gida.758838.
  • Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences. 2011;108(38):16050-16055. doi:10.1073/pnas.1102999108.
  • Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141(2):599-609. doi:10.1053/j.gastro.2011.04.052.
  • Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: Diet, microbiome, and neuropsychiatry. Translational Research. 2017;179:223-244. doi:10.1016/j.trsl.2016.10.002.
  • Ezra-Nevo G, Henriques SF, Ribeiro C. The diet-microbiome tango: how nutrients lead the gut brain axis. Current Opinion in Neurobiology. 2020;62:122-132. doi:10.1016/j.conb.2020.02.005.
  • Berding K, Vlckova K, Marx W, et al. Diet and the microbiota–gut–brain axis: sowing the seeds of good mental health. Advances in Nutrition. 2021;12(4):1239-1285. doi:10.1093/advances/nmaa181.
  • Singh RK, Chang HW, Yan DI, et al. Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine. 2017;15(1):73. doi:10.1186/s12967-017-1175-y.
  • Gibson EL, Barr S, Jeanes YM. Habitual fat intake predicts memory function in younger women. Frontiers in Human Neuroscience. 2013;7:838. doi:10.3389/fnhum.2013.00838.
  • Jones EK, Sünram-Lea SI, Wesnes KA. Acute ingestion of different macronutrients differentially enhances aspects of memory and attention in healthy young adults. Biological Psychology. 2012;89(2):477-486. doi:10.1016/j.biopsycho.2011.12.017.
  • Bourre JM. Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1: Micronutrients. Journal of Nutrition Health and Aging. 2006;10(5):377-385.
  • Wahl D, Cogger VC, Solon-Biet SM, et al. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Research Reviews. 2016;31:80-92. doi:10.1016/j.arr.2016.06.006.
  • Muralidharan J, Galiè S, Hernández-Alonso P, Bulló M, Salas-Salvadó J. Plant-based fat, dietary patterns rich in vegetable fat and gut microbiota modulation. Frontiers in Nutrition. 2019;6:157. doi:10.3389/fnut.2019.00157.
  • Eskelinen MH, Ngandu T, Helkala EL, et al. Fat intake at midlife and cognitive impairment later in life: A population‐based CAIDE study. International Journal of Geriatric Psychiatry. 2008;23(7):741-747. doi:10.1002/gps.1969.
  • Wang SZ, Yu YJ, Adeli K. Role of gut microbiota in neuroendocrine regulation of carbohydrate and lipid metabolism via the microbiota-gut-brain-liver axis. Microorganisms. 2020;8(4):527. doi:10.3390/microorganisms8040527.
  • Leigh SJ, Morris MJ. Diet, inflammation and the gut microbiome: Mechanisms for obesity-associated cognitive impairment. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2020;1866(6):165767. doi:10.1016/j.bbadis.2020.165767.
  • Spencer SJ, D'Angelo H, Soch A, Watkins LR, Maier SF, Barrientos RM. High-fat diet and aging interact to produce neuroinflammation and impair hippocampal-and amygdalar-dependent memory. Neurobiology of Aging. 2017;58:88-101. doi:10.1016/j.neurobiolaging.2017.06.014.
  • Camer D, Yu Y, Szabo A, Fernandez F, Dinh CH, Huang XF. Bardoxolone methyl prevents high-fat diet-induced alterations in prefrontal cortex signalling molecules involved in recognition memory. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2015;59:68-75. doi:10.1016/j.pnpbp.2015.01.004.
  • Fernstrom JD, Fernstrom MH. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. The Journal of Nutrition. 2007;37(6):1539S-1547S. doi:10.1093/jn/137.6.1539S.
  • Jakobsen LH, Kondrup J, Zellner M, Tetens I, Roth E. Effect of a high protein meat diet on muscle and cognitive functions: A randomised controlled dietary intervention trial in healthy men. Clinical Nutrition. 2011;30(3):303-311. doi:10.1016/j.clnu.2010.12.010.
  • Cai J, Chen Z, Wu W, Lin Q, Liang Y. High animal protein diet and gut microbiota in human health. Critical Reviews in Food Science and Nutrition. 2021:1-13. doi:10.1080/10408398.2021.1898336.
  • Kumar J, Rani K, Datt C. Molecular link between dietary fibre, gut microbiota and health. Molecular Biology Reports. 2020;47:6229-6237. doi:10.1007/s11033-020-05611-3.
  • Chassard C, Lacroix C. Carbohydrates and the human gut microbiota. Current Opinion in Clinical Nutrition & Metabolic Care. 2013;16(4):453-460. doi:10.1097/MCO.0b013e3283619e63.
  • İpek KD, Yılmaz HÖ. Diyetin ve karbonhidrat içeriğinin mikrobiyotaya etkisi. Cumhuriyet Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi. 2018;3(2):29-39.
  • Simpson HL, Campbell BJ. Review article: Dietary fibre–microbiota interactions. Alimentary Pharmacology & Therapeutics. 2015;42(2):158-179. doi:10.1111/apt.13248.
  • Liu L, Huh JR, Shah K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine. 2022;77:1-11. doi:10.1016/j.ebiom.2022.103908.
  • Walker AW, Ince J, Duncan SH, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. The ISME Journal. 2011;5(2):220-230. doi:10.1038/ISMEJ.2010.118.
  • Hawkins MA, Keirns NG, Helms Z. Carbohydrates and cognitive function. Current Opinion in Clinical Nutrition & Metabolic Care. 2018;21(4):302-307. doi:10.1097/MCO.0000000000000471.
  • Muth AK, Park SQ. The impact of dietary macronutrient intake on cognitive function and the brain. Clinical Nutrition. 2021;40(6):3999-4010. doi:10.1016/j.clnu.2021.04.043.
  • Sun W, Li S, Chen C, Lu Z, Zhang D. Dietary fiber intake is positively related with cognitive function in US older adults. Journal of Functional Foods. 2022;90:104986. doi:10.1016/j.jff.2022.104986.
  • Liu X, Li X, Xia B, et al. High-fiber diet mitigates maternal obesity-induced cognitive and social dysfunction in the offspring via gut-brain axis. Cell Metabolism. 2021;33(5):923-938. doi:10.1016/j.cmet.2021.02.002.
  • Russell WR, Gratz SW, Duncan SH, et al. High-protein, reduced carbohydrate weight loss diets promote metabolite profiles promote metabolite profiles likely to be detrimental to colonic health. The American Journal of Clinical Nutrition. 2011;93(5):1062-1072. doi:10.3945/ajcn.110.002188.
  • Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Applied and Environmental Microbiology. 2007;73(4):1073-1078. doi:10.1128/AEM.02340-06.
  • Akansel MG. Sağlıklı bireylerde ketojenik diyetin bağırsak mikrobiyotası üzerindeki etkisinin değerlendirilmesi. [doktora tezi]. İstanbul, Türkiye: Beslenme ve Diyetetik Ana Bilim Dalı, Sağlık Bilimleri Enstitüsü; 2021.
  • Iacovide S, Goble D, Paterson B, Meiring RM. Three consecutive weeks of nutritional ketosis has no effect on cognitive function, sleep, and mood compared with a high-carbohydrate, low-fat diet in healthy individuals: A randomized, crossover, controlled trial, The American Journal of Clinical Nutrition. 2019;110(2):349–357. doi:10.1093/ajcn/nqz073.
  • Makris A, Darcey VL, Rosenbaum DL, et al. Similar effects on cognitive performance during high-and low-carbohydrate obesity treatment. Nutrition & Diabetes. 2013;3(9):e89. doi:10.1038/nutd.2013.29.
  • Mohorko N, Černelič-Bizjak M, Poklar-Vatovec T, et al. Weight loss, improved physical performance, cognitive function, eating behavior, and metabolic profile in a 12-week ketogenic diet in obese adults. Nutrition Research. 2019;62:64-77. doi:10.1016/j.nutres.2018.11.007.
  • Krikorian R, Shidler MD, Dangelo K, Couch SC, Benoit SC, Clegg DJ. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiology of Aging. 2012;33(2):419-425. doi:10.1016/j.neurobiolaging.2010.10.006.
  • Neth BJ, Mintz A, Whitlow C, et al. Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer’s disease: A pilot study. Neurobiology of Aging. 2020;86:54-63. doi:10.1016/j.neurobiolaging.2019.09.015Get.
  • Vinciguerra F, Graziano M, Hagnäs M, Frittitta L, Tumminia A. Influence of the mediterranean and ketogenic diets on cognitive status and decline: A narrative review. Nutrients. 2020;12(4):1019. doi:10.3390/nu12041019.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Makaleler
Yazarlar

Ezgi Ertal 0000-0002-6938-6787

Volkan Özkaya 0000-0001-7576-2083

Yayımlanma Tarihi 31 Aralık 2022
Kabul Tarihi 12 Aralık 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

JAMA Ertal E, Özkaya V. Düşük veya Yüksek Karbonhidratlı Diyetlerin Beyin, Beyin-Bağırsak Aksı ve Bilişsel İşlevler Üzerine Etkisi. IGUSABDER. 2022;:1070–1083.

 Alıntı-Gayriticari-Türetilemez 4.0 Uluslararası (CC BY-NC-ND 4.0)