Research Article
BibTex RIS Cite

Determination of Antioxidant Activity of Rosehip Fruit Peel and Seed Parts Prepared by Ultrasonic Assisted Extraction (UAE) Method

Year 2021, Issue: 14, 201 - 212, 31.08.2021
https://doi.org/10.38079/igusabder.902242

Abstract

Aim: In this study, it was aimed to compare the antioxidant activities of ethanol extracts prepared using ultrasonically assisted extraction (UAE) method of both peel and seed of rosehip fruits growing naturally in Gümüşhane province with the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) method.
Method: In this study, the antioxidant activity of the extracts of the peel and seed parts of the rosehip fruit prepared using UAE method at different time intervals was determined by 2,2-diphenyl-1-picryl-hydrazyl (DPPH) method.
Results: The free radical scavenging activity of IC50 value rosehip extracts of UAE assisted extraction for 2 minutes was calculated as 0.69 ± 0.005 mg mL-1 for the peel part and 0.39 ± 0.0007 mg mL-1 for the seed part. The seed part of the rosehip fruit has been found to have a higher radical scavenging activity than the peel part.
Conclusion: It has been concluded that the data obtained are more effective than the data available in the literature, and this is thought to be related to the extraction method used. 

References

  • Halliwell B. Free Radicals and Other Reactive Species in Disease. In: Encyclopedia of Life Sciences, UK ed. London: Wiley, John & Sons; 2001;1-7.
  • Dupre-Crochet S, Erard M, Nübe O. ROS production in phagocytes: why, when, and where? J. Leukoc. Biol. 2013;94:657-670.
  • Zhang J, Wang X, Vikash V, et al. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell Longev. 2016: e4350965.
  • Suntres ZE. Role of antioxidants in paraquat toxicity. Toxicol. 2002;180(1):65-77.
  • Jomova K, Valko M. Advances in metal-ınduced oxidative stress and human disease. Toxicol. 2011;283(2-3):65-87.
  • Suntres ZE. Liposomal antioxidants for protection against oxidant-ınduced damage. J Toxicol. 2011;(2):152474.
  • Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015;11(8):982.
  • Chanda S, Dave R. In Vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: an overview. Afr. J. Microbiol. Res. 2009;3(13):981-996.
  • Rivero RM, Ruiz JM, Garcıa PC, Lopez-Lefebre LR, Sánchez E, Romero L. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 2001;160(2):315-321.
  • Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 2002;5(3):218-223.
  • Michalak A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud. 2006;15(4):523-30.
  • Cheikh-Affene ZB, Haouala F, Trabelsi N, Boulaaba M, Ksouri R, Harzallah- Skhiri F. Pomological description and chemical composition of rose hips gathered on four rosa species section caninae growing wild in tunisia. J Agr Sci Tech. 2013;1:43-50.
  • Jiménez S, Jiménez-Moreno N, Luquin A, Laguna M, Rodríguez-Yoldi MJ, Ancín-Azpilicueta C. Chemical composition of rosehips from different rosa species: an alternative source of antioxidants for food ındustry. Food Addict. Contam. Part A. 2017;34:1121-1130.
  • Ercisli S. Chemical composition of fruits in some rose (Rosa spp.) species. Food Chem. 2007;104:1379-1384.
  • Serteser A, Kargioglu M, Gok V, Bagci Y, Ozcan MM, Arslan D. Determination of antioxidant effects of some plant species wild growing in Turkey. Int. J. Food Sci. Nutr. 2008;59(7-8):643-651.
  • Barros L, Carvalho AM, Ferreira ICFR. Exotic fruits as a source of important phytochemicals: improving the traditional use of rosa canina fruits in portugal. Food Res Int. 2011;44:2233-2236.
  • Roman I, Stanila A, Stanila S. Bioactive compounds and antioxidant activity of rosa canina l. biotypes from spontaneous flora of transylvania. Chem. Cent. J. 2013;7:73.
  • Demir N, Yildiz O, Alpaslan M, Hayaloglu AA. Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT - Food Sci Technol. 2014;57:126-133.
  • Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Food Sci and Technol. 1995;28:25-30.
  • Lipinski B. Pathophysiology of oxidative stress in diabetes mellitus. J. Diabetes Complic. 2001;15:203-210.
  • Rochette L, Zeller M, Cottin Y, Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochim. Biophys. Acta. 2014;1840:2709-2729.
  • Dupont GP, Huecksteadt TP. Regulation of xanthine dehydrogenase and xanthine oxidase activity and gene expression in cultured rat pulmonary endothelial cells. J Clin Invest. 1992;89(1):197-202.
  • Del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB. Reactive oxygen species, reactive nitrogen species in peroxisomes. production, scavenging, and role in cell signaling. Plant Physiol. 2006;141:330-35.
  • Choudhury S, Panda P, Sahoo L, Panda SK. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav. 2013;8:e23681.
  • Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405-10.
  • Zhao J, Davis LC, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv. 2005;23:283-333.
  • Alscher RG, Donahue JL, Cramer CL. Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant. 1997;100:224-33.
  • Krishnaiah D, Sarbatly R, Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food Bioprod Process. 2011;89:217-33.
  • Kasote DM, Hegde MV, Katyare SS. Mitochondrial dysfunction in psychiatric and neurological diseases: cause(s), consequence(s), and ımplications of antioxidant therapy. Biofactors. 2013;39:392-06.
  • Xu DP, Zhou Y, Zheng J, Li S, Li AN, Li HB. Optimization of ultrasound-assisted extraction of natural antioxidants from the flower of jatropha integerrima by response surface methodology. Molecules. 2016;21(1):2-12.
  • Chemat F, Grondin I, Shum CSA, Smadja J. Deterioration of edible oils during food processing by ultrasound. 2004;11:13-15.
  • Chemat F, Grondin I, Costes P, Moutoussamy L, Shum CSA, Smadja J. Highpower ultrasound effects on lipid oxidation of refined ultrason sonochemistry sunflower oil. Ultrason Sonochem. 2004;11:281-285.
  • Jahouach-Rabai W, Trabelsi M, Van Hoed V, et al. Influence of bleaching by ultrasound on fatty acids and minor compounds of olive oil. qualitative and quantitative analysis of volatile compounds (by SPME Coupled to GC/MS). Ultrason Sonochem. 2008;15:590-597.
  • Chemat F, Huma Z, Khan MK. Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem. 2011;18:813-835.
  • AAT Bioquest Inc. Quest Graph™ IC50 Calculator, Retrieved from https://www.aatbio.com/tools/ic50-calculator, 2020.
  • Orhan N, Aslan M, Hosbas S, Deliorman OD. Antidiabetic effect and antioxidant potential of rosa canina fruits. Pharmacogn Mag. 2009;5(20):309.
  • Fattahi S, Jamei R, Hosseını SS. Antioxidant and antiradical activities of rosa canina and rosa pimpinellifolia fruits from West Azerbaijan. Iran J Plant Physiol. 2012;2(4):523-529.
  • Kumarasamy Y, Cox PJ, Jaspars M, Rashid MA, Sarker SD. Bioactive flavonoid glycosides from the seeds of Rosa canina. Pharm Biol. 2003;41(4):237-242.
  • Jemaa HB, Jemia AB, Khlifi S, et al. Antioxidant activity and α-amylase inhibitory potential of Rosa canina L. Afr J Tradit Complement Altern Med. 2017;14(2):1-8.
  • Cong X, Bing W, Yi-Qiong P, Jian-Sheng T, Tong Z. Advances in extraction and analysis of phenolic compounds from plant materials. Chin. J. Nat. Med. 2017;15:721-731.

Ultrasonik Destekli Ekstraksiyon (UAE) Yöntemi ile Hazırlanan Kuşburnu Meyvesi Kabuk ve Çekirdek Kısımlarının Antioksidan Aktivitesinin Belirlenmesi

Year 2021, Issue: 14, 201 - 212, 31.08.2021
https://doi.org/10.38079/igusabder.902242

Abstract

Amaç: Bu çalışmada Gümüşhane ilinde doğal olarak yetişen kuşburnu meyvelerinin hem kabuk hem de çekirdeğinin (tohum) ultrasonik destekli ekstraksiyon (UAE) yöntemi kullanılarak hazırlanan etanol ekstraktlarının 2,2-diphenyl-1-picryl-hydrazil (DPPH) metodu ile antioksidan aktivitelerinin kıyaslanması amaçlanmıştır.
Yöntem: Çalışmada kuşburnu meyvesinin kabuk ve çekirdeğine ait kısımlarından farklı zaman aralıklarında UAE yöntemi kullanılarak hazırlanmış olan ekstraktların antioksidan aktivitesi 2,2-diphenyl-1-picryl-hydrazil (DPPH) metodu ile belirlenmiştir.
Bulgular: 2 dakika süreyle UAE destekli ekstraksiyona ait kuşburnu ekstraktlarının serbest radikal yakalama aktivitesinin hem kabuk hem de çekirdek için IC50 değeri sırasıyla 0.69±0.005 mg mL-1 ve 0.39±0.0007 mg mL-1 olarak hesaplanmıştır. Kuşburnu meyvesine ait çekirdek kısmının kabuk kısmına göre daha yüksek bir radikal süpürücü aktiviteye sahip olduğu bulunmuştur.
Sonuç: Elde edilen verilerin literatürde mevcut bulunan verilere göre daha etkili olduğu sonucuna varılmış olup bunun kullanılan ekstraksiyon yöntemi ile ilişkili olduğu düşünülmektedir. 

References

  • Halliwell B. Free Radicals and Other Reactive Species in Disease. In: Encyclopedia of Life Sciences, UK ed. London: Wiley, John & Sons; 2001;1-7.
  • Dupre-Crochet S, Erard M, Nübe O. ROS production in phagocytes: why, when, and where? J. Leukoc. Biol. 2013;94:657-670.
  • Zhang J, Wang X, Vikash V, et al. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell Longev. 2016: e4350965.
  • Suntres ZE. Role of antioxidants in paraquat toxicity. Toxicol. 2002;180(1):65-77.
  • Jomova K, Valko M. Advances in metal-ınduced oxidative stress and human disease. Toxicol. 2011;283(2-3):65-87.
  • Suntres ZE. Liposomal antioxidants for protection against oxidant-ınduced damage. J Toxicol. 2011;(2):152474.
  • Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015;11(8):982.
  • Chanda S, Dave R. In Vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: an overview. Afr. J. Microbiol. Res. 2009;3(13):981-996.
  • Rivero RM, Ruiz JM, Garcıa PC, Lopez-Lefebre LR, Sánchez E, Romero L. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 2001;160(2):315-321.
  • Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 2002;5(3):218-223.
  • Michalak A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud. 2006;15(4):523-30.
  • Cheikh-Affene ZB, Haouala F, Trabelsi N, Boulaaba M, Ksouri R, Harzallah- Skhiri F. Pomological description and chemical composition of rose hips gathered on four rosa species section caninae growing wild in tunisia. J Agr Sci Tech. 2013;1:43-50.
  • Jiménez S, Jiménez-Moreno N, Luquin A, Laguna M, Rodríguez-Yoldi MJ, Ancín-Azpilicueta C. Chemical composition of rosehips from different rosa species: an alternative source of antioxidants for food ındustry. Food Addict. Contam. Part A. 2017;34:1121-1130.
  • Ercisli S. Chemical composition of fruits in some rose (Rosa spp.) species. Food Chem. 2007;104:1379-1384.
  • Serteser A, Kargioglu M, Gok V, Bagci Y, Ozcan MM, Arslan D. Determination of antioxidant effects of some plant species wild growing in Turkey. Int. J. Food Sci. Nutr. 2008;59(7-8):643-651.
  • Barros L, Carvalho AM, Ferreira ICFR. Exotic fruits as a source of important phytochemicals: improving the traditional use of rosa canina fruits in portugal. Food Res Int. 2011;44:2233-2236.
  • Roman I, Stanila A, Stanila S. Bioactive compounds and antioxidant activity of rosa canina l. biotypes from spontaneous flora of transylvania. Chem. Cent. J. 2013;7:73.
  • Demir N, Yildiz O, Alpaslan M, Hayaloglu AA. Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT - Food Sci Technol. 2014;57:126-133.
  • Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Food Sci and Technol. 1995;28:25-30.
  • Lipinski B. Pathophysiology of oxidative stress in diabetes mellitus. J. Diabetes Complic. 2001;15:203-210.
  • Rochette L, Zeller M, Cottin Y, Vergely C. Diabetes, oxidative stress and therapeutic strategies. Biochim. Biophys. Acta. 2014;1840:2709-2729.
  • Dupont GP, Huecksteadt TP. Regulation of xanthine dehydrogenase and xanthine oxidase activity and gene expression in cultured rat pulmonary endothelial cells. J Clin Invest. 1992;89(1):197-202.
  • Del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB. Reactive oxygen species, reactive nitrogen species in peroxisomes. production, scavenging, and role in cell signaling. Plant Physiol. 2006;141:330-35.
  • Choudhury S, Panda P, Sahoo L, Panda SK. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav. 2013;8:e23681.
  • Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7:405-10.
  • Zhao J, Davis LC, Verpoorte R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv. 2005;23:283-333.
  • Alscher RG, Donahue JL, Cramer CL. Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant. 1997;100:224-33.
  • Krishnaiah D, Sarbatly R, Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food Bioprod Process. 2011;89:217-33.
  • Kasote DM, Hegde MV, Katyare SS. Mitochondrial dysfunction in psychiatric and neurological diseases: cause(s), consequence(s), and ımplications of antioxidant therapy. Biofactors. 2013;39:392-06.
  • Xu DP, Zhou Y, Zheng J, Li S, Li AN, Li HB. Optimization of ultrasound-assisted extraction of natural antioxidants from the flower of jatropha integerrima by response surface methodology. Molecules. 2016;21(1):2-12.
  • Chemat F, Grondin I, Shum CSA, Smadja J. Deterioration of edible oils during food processing by ultrasound. 2004;11:13-15.
  • Chemat F, Grondin I, Costes P, Moutoussamy L, Shum CSA, Smadja J. Highpower ultrasound effects on lipid oxidation of refined ultrason sonochemistry sunflower oil. Ultrason Sonochem. 2004;11:281-285.
  • Jahouach-Rabai W, Trabelsi M, Van Hoed V, et al. Influence of bleaching by ultrasound on fatty acids and minor compounds of olive oil. qualitative and quantitative analysis of volatile compounds (by SPME Coupled to GC/MS). Ultrason Sonochem. 2008;15:590-597.
  • Chemat F, Huma Z, Khan MK. Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem. 2011;18:813-835.
  • AAT Bioquest Inc. Quest Graph™ IC50 Calculator, Retrieved from https://www.aatbio.com/tools/ic50-calculator, 2020.
  • Orhan N, Aslan M, Hosbas S, Deliorman OD. Antidiabetic effect and antioxidant potential of rosa canina fruits. Pharmacogn Mag. 2009;5(20):309.
  • Fattahi S, Jamei R, Hosseını SS. Antioxidant and antiradical activities of rosa canina and rosa pimpinellifolia fruits from West Azerbaijan. Iran J Plant Physiol. 2012;2(4):523-529.
  • Kumarasamy Y, Cox PJ, Jaspars M, Rashid MA, Sarker SD. Bioactive flavonoid glycosides from the seeds of Rosa canina. Pharm Biol. 2003;41(4):237-242.
  • Jemaa HB, Jemia AB, Khlifi S, et al. Antioxidant activity and α-amylase inhibitory potential of Rosa canina L. Afr J Tradit Complement Altern Med. 2017;14(2):1-8.
  • Cong X, Bing W, Yi-Qiong P, Jian-Sheng T, Tong Z. Advances in extraction and analysis of phenolic compounds from plant materials. Chin. J. Nat. Med. 2017;15:721-731.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Articles
Authors

Arzu Özgen 0000-0003-2104-6019

Nurcihan Tan Erkoç 0000-0002-0029-0197

Ömer Faruk Taştan 0000-0003-1174-5860

Funda Pehlevan 0000-0003-3906-977X

Publication Date August 31, 2021
Acceptance Date August 5, 2021
Published in Issue Year 2021 Issue: 14

Cite

JAMA Özgen A, Tan Erkoç N, Taştan ÖF, Pehlevan F. Ultrasonik Destekli Ekstraksiyon (UAE) Yöntemi ile Hazırlanan Kuşburnu Meyvesi Kabuk ve Çekirdek Kısımlarının Antioksidan Aktivitesinin Belirlenmesi. IGUSABDER. 2021;:201–212.

 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)