Research Article
BibTex RIS Cite

One of the Factor Associated with Etiopathogenesis of Diabetes Mellitus: Intraerythrocyte Fluid Volume

Year 2024, Issue: 24, 1130 - 1139, 30.12.2024
https://doi.org/10.38079/igusabder.1509013

Abstract

Aim: The aim of the present study was to investigate the levels of intraerythrocyte fluid volume, erythrocyte indices, and biochemical parameters and to evaluate the relationship between intraerythrocyte fluid volume and these parameters in patients with Diabetes Mellitus (DM) and healthy controls.
Method: The study included 42 patients with DM and 40 healthy controls. Biochemical parameters were measured using an automated analyzer. Complete blood counts were performed using an automated hematology analyzer, and intraerythrocyte fluid volumes were measured using the microcentrifugation method.
Results: Intraerythrocyte fluid volume, glycated hemoglobin (HbA1c), and glucose levels were higher in the patient group than in the control group, whereas mean corpuscular volume (MCV), potassium (K), and sodium (Na) values were lower in the patient group than in the control group. On the other hand, a negative correlation was found between intraerythrocyte fluid volume and mean corpuscular hemoglobin concentration (MCHC), magnesium (Mg), and K values in the patient group.
Conclusion: Studies findings indicated that intraerythrocyte fluid volume may be an effective hemodynamic parameter in the etiopathogenesis of DM. In line with these data, it can be suggested that intraerythrocyte fluid volume is an important factor that should be considered in monitoring the progression of the disease.

Ethical Statement

Ethics committee permission for the study was received from the University of Health Sciences, Haseki Training and Research Hospital Ethics Committee (Date: 04/08/2023, Issue: 198) and the study was conducted in accordance with the principles of the Declaration of Helsinki.

Thanks

Faculty of Medicine students S. Ekici, AF Takak, ZH Erem, B Sikan, UG Sen, M Aldemir were presented the preliminary data of this study partially at the 5th National Future Medicine Congress with 2 International Participations 4-6 May 2024, Sakarya University Esentepe Campus, Sakarya-Turkey. We thank them for their contribution.

References

  • 1. Banerjee A, Chattopadhyay A, Bandyopadhyay D. Biorhythmic and receptor mediated interplay between melatonin and insulin: its consequences on diabetic erythrocytes. Melatonin Research. 2020;3(2):243-63. doi: 10.32794/mr12250060.
  • 2. Lee S, Lee MY, Nam JS, et al. Hemorheological approach for early detection of chronic kidney disease and diabetic nephropathy in Type 2 Diabetes. Diabetes Technol Ther. 2015;(11):808-15. doi: 10.1089/dia.2014.0295.
  • 3. Holliger C, Lemley KV, Schmitt SL, Thomas FC, Robertson CR, Jamison RL. Direct determination of vasa recta blood flow in the rat renal papilla. Circ Res. 1983;53:401–13. doi: 10.1161/01.RES.53.3.401.
  • 4. Mayrovitz HN. Skin capillary metrics and hemodynamics in the hairless mouse. Microvasc Res. 1992;43:46–59. doi: 10.1016/0026-2862(92)90005-A.
  • 5. Unekawa M, Tomita M, Tomita Y, et al. RBC velocities in single capillaries of mouse and rat brains are the same, despite 10-fold difference in body size. Brain Res. 2010;1320:69–73. doi: 10.1016/j.brainres.2010.01.032.
  • 6. Sugie J, Intaglietta M, Sung LA. Water transport and homeostasis as a major function of erythrocytes. Am J Physiol Heart Circ Physiol. 2018;314(5):H1098-H1107. doi: 10.1152/ajpheart.00263.2017.
  • 7. Chu X, Chen J, Reedy MC, et al. E-Tmod capping of actin filaments at the slow-growing end is required to establish mouse embryonic circulation. Am J Physiol Heart Circ Physiol. 2003;284:H1827–H1838. doi: 10.1152/ajpheart.00947.2002.
  • 8. Sung LA, Vera C. Protofilament and hexagon: a three-dimensional mechanical model for the junctional complex in the erythrocyte membrane skeleton. Ann Biomed Eng. 2003;31:1314–326. doi: 10.1114/1.1635820.
  • 9. Wang Y, Yang P, Yan Z, et al. The relationship between erythrocytes and Diabetes Mellitus. J Diabetes Res. 2021;2021:6656062. doi: 10.1155/2021/6656062.
  • 10. Caturano A, D'Angelo M, Mormone A, et al. Oxidative stress in Type 2 Diabetes: Impacts from pathogenesis to lifestyle modifications. Curr Issues Mol Biol. 2023;45(8):6651-6666. doi: 10.3390/cimb45080420.
  • 11. Williams A, Bissinger R, Shamaa H, et al. Pathophysiology of red blood cell dysfunction in diabetes and its complications. Pathophysiology. 2023;30(3):327-345. doi: 10.3390/pathophysiology30030026.
  • 12. Ebrahimi S, Bagchi P. A computational study of red blood cell deformability effect on hemodynamic alteration in capillary vessel networks. Sci Rep. 2022;12:4304.
  • 13. Wali RK, Jaffe S, Kumar D, Kalra VK. Alterations in organization of phospholipids in erythrocytes as factor in adherence to endothelial cells in diabetes mellitus. Diabetes. 1988;37(1):104-111. doi: 10.2337/diab.37.1.104.
  • 14. Mazzanti L, Faloia E, Rabini RA, et al. Diabetes mellitus induces red blood cell plasma membrane alterations possibly affecting the aging process. Clin. Biochem. 1992;25(1):41-6. doi: 10.1016/0009-9120(92)80044-h.
  • 15. Mawatari S, Saito K, Murakami K, Fujino T. Absence of correlation between glycated hemoglobin and lipid composition of erythrocyte membrane in type 2 diabetic patients. Metab. 2004;531:123-27. doi: 10.1016/j.metabol.2003.07.016.
  • 16. Forsyth AM, Braunmüller S, Wan J, et al. The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release. Microvasc. Res. 2012;3(3):347-51. doi: 10.1016/j.mvr.2012.02.004.
  • 17. Baldini P, Incerpi S, Lambert-Gardini S, et al. Membrane lipid alterations and Na+-pumping activity in erythrocytes from IDDM and NIDDM subjects. Diabetes. 1989;38(7):825-831. doi: 10.2337/diab.38.7.825.
  • 18. Buys AV, Van Rooy MJ, Soma P, et al. Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Cardiovasc Diabetol. 2013;12:25. doi: 10.1186/1475-2840-12-25.
  • 19. Pretorius E, Bester J, Vermeulen N, et al. Poorly controlled type 2 diabetes is accompanied by significant morphological and ultrastructural changes in both erythrocytes and in thrombin-generated fibrin: implications for diagnostics. Cardiovasc Diabetol. 2015;14:30. doi: 10.1186/s12933-015-0192-5.
  • 20. Basta G. Receptor for advanced glycation endproducts and atherosclerosis: From basic mechanisms to clinical implications. Atherosclerosis. 2008;196(1):9-21. doi: 10.1016/j.atherosclerosis.2007.07.025.
  • 21. Engström G, Smith JG, Persson M, et al. Red cell distribution width, haemoglobin A1c and incidence of diabetes mellitus. J Intern Med. 2014;276(2):174-83. doi: 10.1111/joim.12188.
  • 22. Hatanaka H, Hanyu H, Fukasawa R, et al. Peripheral oxidative stress markers in diabetes-related dementia. Geriatr Gerontol Int. 2016;16(12):1312-1318. doi: 10.1111/ggi.12645.
  • 23. Elkrief L, Rautou PE, Sarin S, et al. Diabetes mellitus in patients with cirrhosis: clinical implications and management. Liver Int. 2016;36(7):936-48. doi: 10.1111/liv.13115.
  • 24. Bonadonna RC, Del Prato S, Bonora E, et al. Roles of glucose transport and glucose phosphorylation in muscle insulin resistance of NIDDM. Diabetes. 1996;45(7):915-25. doi: 10.2337/diab.45.7.915.
  • 25. Morabito R, Remigante A, Spinelli S, et al. High glucose concentrations affect band 3 protein in human erythrocytes. Antioxidants (Basel). 2020;9(5):365. doi: 10.3390/antiox9050365.
  • 26. Astor BC, Muntner P, Levin A, et al. Association of kidney function with anemia: the Third National Health and Nutrition Examination Survey (1988-1994). Arch Intern Med. 2002;162(12):1401-8. doi: 10.1001/archinte.162.12.1401.
  • 27. Singh DK, Winocour P, Farrington K. Erythropoietic stress and anemia in diabetes mellitus. Nat Rev Endocrinol. 2009;5(4):204-10. doi: 10.1038/nrendo.2009.17.
  • 28. Fava S, Azzopardi J, Ellard S, Hattersley AT. ACE gene polymorphism as a prognostic indicator in patients with type 2 diabetes and established renal disease. Diabetes Care. 2001;24(12):2115-20. doi: 10.2337/diacare.24.12.2115.
  • 29. Babu N, Singh M. Influence of hyperglycemia on aggregation, deformability and shape parameters of erythrocytes. Clin Hemorheol Microcirc. 2004;31(4):273-80.
  • 30. Aydemir B, Kızıler AR, Cinemre FB, et al. Relation between plazma viscosity and some biochemical parameters in women with gestational diabetes mellitus. Int J Basic Clin Med. 2015;3(1):6-14.
  • 31. Yasmin F, Haleem DJ, Haleem MA. Intraerythrocyte and serum electrolytes in diabetic patients with hypertension. J Coll Physicians Surg Pak. 2006;16(7):445-449.
  • 32. Khan RN, Saba F, Kausar SF, Siddiqui MH. Pattern of electrolyte imbalance in Type 2 diabetes patients: Experience from a tertiary care hospital. Pak J Med Sci. 2019;35(3):797-801. doi: 10.12669/pjms.35.3.844.
  • 33. Eshetu B, Worede A, Fentie A, et al. Assessment of electrolyte imbalance and associated factors among adult diabetic patients attending the University of Gondar Comprehensive Specialized Hospital, Ethiopia: A comparative cross-sectional study. Diabetes Metab Syndr Obes. 2023;16:1207-1220. doi: 10.2147/DMSO.S404788.
  • 34. Cecerska-Heryć E, Krauze K, Szczęśniak A, et al. Activity of erythrocyte antioxidant enzymes in healthy women depends on age, BMI, physical activity, and diet. J Health Popul Nutr. 2022;41(1):35. doi: 10.1186/s41043-022-00311-z.
  • 35. Iuchi Y, Okada F, Onuma K, et al. Elevated oxidative stress in erythrocytes due to a SOD1 deficiency causes anaemia and triggers autoantibody production. Biochem J. 2007;402(2):219-227. doi: 10.1042/BJ20061386.

Diabetes Mellitus Etiyopatogenezinde İlişkili Faktörlerden Biri: Eritrosit İçi Sıvı Hacmi

Year 2024, Issue: 24, 1130 - 1139, 30.12.2024
https://doi.org/10.38079/igusabder.1509013

Abstract

Amaç: Bu çalışmanın amacı Diabetes Mellitus (DM) hastaları ve sağlıklı kontrollerde eritrosit içi sıvı hacmi, eritrosit indeksleri ve biyokimyasal parametrelerin düzeylerini araştırmak ve eritrosit içi sıvı hacmi ile bu parametreler arasındaki ilişkiyi değerlendirmektir.
Yöntem: Çalışmaya 42 DM'li hasta ve 40 sağlıklı kontrol dahil edildi. Biyokimyasal parametreler otomatik analizör kullanılarak ölçüldü. Otomatik hematoloji analiz cihazı kullanılarak tam kan sayımı yapıldı ve mikrosantrifüj yöntemi kullanılarak eritrosit içi sıvı hacimleri ölçüldü.
Bulgular: Hasta grubunda eritrosit içi sıvı hacmi, glikolize hemoglobin (HbA1c) ve glukoz düzeyleri kontrol grubuna göre daha yüksek, ortalama eritrosit hacmi (MCV), potasyum (K) ve sodyum (Na) değerleri ise hasta grubunda kontrol grubuna göre daha düşüktü. Öte yandan hasta grubunda eritrosit içi sıvı hacmi ile ortalama eritrosit hemoglobin konsantrasyonu (MCHC), magnezyum (Mg) ve K değerleri arasında negatif korelasyon saptandı.
Sonuç: Bulgular, eritrosit içi sıvı hacminin DM etyopatogenezinde etkili bir hemodinamik parametre olabileceğini göstermiştir. Bu veriler doğrultusunda eritrosit içi sıvı hacminin hastalığın seyrinin takibinde dikkate alınması gereken önemli bir faktör olduğu önerilebilir.

References

  • 1. Banerjee A, Chattopadhyay A, Bandyopadhyay D. Biorhythmic and receptor mediated interplay between melatonin and insulin: its consequences on diabetic erythrocytes. Melatonin Research. 2020;3(2):243-63. doi: 10.32794/mr12250060.
  • 2. Lee S, Lee MY, Nam JS, et al. Hemorheological approach for early detection of chronic kidney disease and diabetic nephropathy in Type 2 Diabetes. Diabetes Technol Ther. 2015;(11):808-15. doi: 10.1089/dia.2014.0295.
  • 3. Holliger C, Lemley KV, Schmitt SL, Thomas FC, Robertson CR, Jamison RL. Direct determination of vasa recta blood flow in the rat renal papilla. Circ Res. 1983;53:401–13. doi: 10.1161/01.RES.53.3.401.
  • 4. Mayrovitz HN. Skin capillary metrics and hemodynamics in the hairless mouse. Microvasc Res. 1992;43:46–59. doi: 10.1016/0026-2862(92)90005-A.
  • 5. Unekawa M, Tomita M, Tomita Y, et al. RBC velocities in single capillaries of mouse and rat brains are the same, despite 10-fold difference in body size. Brain Res. 2010;1320:69–73. doi: 10.1016/j.brainres.2010.01.032.
  • 6. Sugie J, Intaglietta M, Sung LA. Water transport and homeostasis as a major function of erythrocytes. Am J Physiol Heart Circ Physiol. 2018;314(5):H1098-H1107. doi: 10.1152/ajpheart.00263.2017.
  • 7. Chu X, Chen J, Reedy MC, et al. E-Tmod capping of actin filaments at the slow-growing end is required to establish mouse embryonic circulation. Am J Physiol Heart Circ Physiol. 2003;284:H1827–H1838. doi: 10.1152/ajpheart.00947.2002.
  • 8. Sung LA, Vera C. Protofilament and hexagon: a three-dimensional mechanical model for the junctional complex in the erythrocyte membrane skeleton. Ann Biomed Eng. 2003;31:1314–326. doi: 10.1114/1.1635820.
  • 9. Wang Y, Yang P, Yan Z, et al. The relationship between erythrocytes and Diabetes Mellitus. J Diabetes Res. 2021;2021:6656062. doi: 10.1155/2021/6656062.
  • 10. Caturano A, D'Angelo M, Mormone A, et al. Oxidative stress in Type 2 Diabetes: Impacts from pathogenesis to lifestyle modifications. Curr Issues Mol Biol. 2023;45(8):6651-6666. doi: 10.3390/cimb45080420.
  • 11. Williams A, Bissinger R, Shamaa H, et al. Pathophysiology of red blood cell dysfunction in diabetes and its complications. Pathophysiology. 2023;30(3):327-345. doi: 10.3390/pathophysiology30030026.
  • 12. Ebrahimi S, Bagchi P. A computational study of red blood cell deformability effect on hemodynamic alteration in capillary vessel networks. Sci Rep. 2022;12:4304.
  • 13. Wali RK, Jaffe S, Kumar D, Kalra VK. Alterations in organization of phospholipids in erythrocytes as factor in adherence to endothelial cells in diabetes mellitus. Diabetes. 1988;37(1):104-111. doi: 10.2337/diab.37.1.104.
  • 14. Mazzanti L, Faloia E, Rabini RA, et al. Diabetes mellitus induces red blood cell plasma membrane alterations possibly affecting the aging process. Clin. Biochem. 1992;25(1):41-6. doi: 10.1016/0009-9120(92)80044-h.
  • 15. Mawatari S, Saito K, Murakami K, Fujino T. Absence of correlation between glycated hemoglobin and lipid composition of erythrocyte membrane in type 2 diabetic patients. Metab. 2004;531:123-27. doi: 10.1016/j.metabol.2003.07.016.
  • 16. Forsyth AM, Braunmüller S, Wan J, et al. The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release. Microvasc. Res. 2012;3(3):347-51. doi: 10.1016/j.mvr.2012.02.004.
  • 17. Baldini P, Incerpi S, Lambert-Gardini S, et al. Membrane lipid alterations and Na+-pumping activity in erythrocytes from IDDM and NIDDM subjects. Diabetes. 1989;38(7):825-831. doi: 10.2337/diab.38.7.825.
  • 18. Buys AV, Van Rooy MJ, Soma P, et al. Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Cardiovasc Diabetol. 2013;12:25. doi: 10.1186/1475-2840-12-25.
  • 19. Pretorius E, Bester J, Vermeulen N, et al. Poorly controlled type 2 diabetes is accompanied by significant morphological and ultrastructural changes in both erythrocytes and in thrombin-generated fibrin: implications for diagnostics. Cardiovasc Diabetol. 2015;14:30. doi: 10.1186/s12933-015-0192-5.
  • 20. Basta G. Receptor for advanced glycation endproducts and atherosclerosis: From basic mechanisms to clinical implications. Atherosclerosis. 2008;196(1):9-21. doi: 10.1016/j.atherosclerosis.2007.07.025.
  • 21. Engström G, Smith JG, Persson M, et al. Red cell distribution width, haemoglobin A1c and incidence of diabetes mellitus. J Intern Med. 2014;276(2):174-83. doi: 10.1111/joim.12188.
  • 22. Hatanaka H, Hanyu H, Fukasawa R, et al. Peripheral oxidative stress markers in diabetes-related dementia. Geriatr Gerontol Int. 2016;16(12):1312-1318. doi: 10.1111/ggi.12645.
  • 23. Elkrief L, Rautou PE, Sarin S, et al. Diabetes mellitus in patients with cirrhosis: clinical implications and management. Liver Int. 2016;36(7):936-48. doi: 10.1111/liv.13115.
  • 24. Bonadonna RC, Del Prato S, Bonora E, et al. Roles of glucose transport and glucose phosphorylation in muscle insulin resistance of NIDDM. Diabetes. 1996;45(7):915-25. doi: 10.2337/diab.45.7.915.
  • 25. Morabito R, Remigante A, Spinelli S, et al. High glucose concentrations affect band 3 protein in human erythrocytes. Antioxidants (Basel). 2020;9(5):365. doi: 10.3390/antiox9050365.
  • 26. Astor BC, Muntner P, Levin A, et al. Association of kidney function with anemia: the Third National Health and Nutrition Examination Survey (1988-1994). Arch Intern Med. 2002;162(12):1401-8. doi: 10.1001/archinte.162.12.1401.
  • 27. Singh DK, Winocour P, Farrington K. Erythropoietic stress and anemia in diabetes mellitus. Nat Rev Endocrinol. 2009;5(4):204-10. doi: 10.1038/nrendo.2009.17.
  • 28. Fava S, Azzopardi J, Ellard S, Hattersley AT. ACE gene polymorphism as a prognostic indicator in patients with type 2 diabetes and established renal disease. Diabetes Care. 2001;24(12):2115-20. doi: 10.2337/diacare.24.12.2115.
  • 29. Babu N, Singh M. Influence of hyperglycemia on aggregation, deformability and shape parameters of erythrocytes. Clin Hemorheol Microcirc. 2004;31(4):273-80.
  • 30. Aydemir B, Kızıler AR, Cinemre FB, et al. Relation between plazma viscosity and some biochemical parameters in women with gestational diabetes mellitus. Int J Basic Clin Med. 2015;3(1):6-14.
  • 31. Yasmin F, Haleem DJ, Haleem MA. Intraerythrocyte and serum electrolytes in diabetic patients with hypertension. J Coll Physicians Surg Pak. 2006;16(7):445-449.
  • 32. Khan RN, Saba F, Kausar SF, Siddiqui MH. Pattern of electrolyte imbalance in Type 2 diabetes patients: Experience from a tertiary care hospital. Pak J Med Sci. 2019;35(3):797-801. doi: 10.12669/pjms.35.3.844.
  • 33. Eshetu B, Worede A, Fentie A, et al. Assessment of electrolyte imbalance and associated factors among adult diabetic patients attending the University of Gondar Comprehensive Specialized Hospital, Ethiopia: A comparative cross-sectional study. Diabetes Metab Syndr Obes. 2023;16:1207-1220. doi: 10.2147/DMSO.S404788.
  • 34. Cecerska-Heryć E, Krauze K, Szczęśniak A, et al. Activity of erythrocyte antioxidant enzymes in healthy women depends on age, BMI, physical activity, and diet. J Health Popul Nutr. 2022;41(1):35. doi: 10.1186/s41043-022-00311-z.
  • 35. Iuchi Y, Okada F, Onuma K, et al. Elevated oxidative stress in erythrocytes due to a SOD1 deficiency causes anaemia and triggers autoantibody production. Biochem J. 2007;402(2):219-227. doi: 10.1042/BJ20061386.
There are 35 citations in total.

Details

Primary Language English
Subjects Disease Surveillance
Journal Section Articles
Authors

Nurten Bahtiyar 0000-0003-2420-8415

Birsen Aydemir 0000-0003-1406-864X

Burcu Hacıoğlu 0000-0002-0389-6004

Leyla Sevinç Afşar 0000-0003-4122-5452

Gamze Savaş 0000-0002-2941-8473

Fadime Köse 0000-0002-6822-6263

İnci Azmamedova 0009-0009-4516-2285

Ali Rıza Kızıler 0000-0003-0375-1881

Fatma Behice Cinemre 0000-0002-1972-1575

Early Pub Date December 30, 2024
Publication Date December 30, 2024
Submission Date July 2, 2024
Acceptance Date November 11, 2024
Published in Issue Year 2024 Issue: 24

Cite

JAMA Bahtiyar N, Aydemir B, Hacıoğlu B, Sevinç Afşar L, Savaş G, Köse F, Azmamedova İ, Kızıler AR, Cinemre FB. One of the Factor Associated with Etiopathogenesis of Diabetes Mellitus: Intraerythrocyte Fluid Volume. IGUSABDER. 2024;:1130–1139.

 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)