Research Article
BibTex RIS Cite

Farklı Sulama Yönetimlerinin Fındık (Corylus avellana L.) Bahçesinde Bazı Toprak Fiziksel ve Kimyasal Özelliklerine Etkileri

Year 2022, , 508 - 519, 15.12.2022
https://doi.org/10.24180/ijaws.1195378

Abstract

Bu çalışma farklı sulama yönetimlerinin (Kontrol, % 70 sulama, % 100 sulama, %130 sulama) fındık bahçesi toprakları üzerine etkilerini araştırmak amacıyla Samsun ili Tekkeköy ilçesinde gerçekleştirilmiştir. İki yıl süreyle yürütülen sulama yönetimleri sonrasında iki farklı toprak derinliğinden (0-15 cm ve 15-30 cm) bozulmuş ve bozulmamış toprak örnekleri alınmıştır. Bozulmuş toprak örneklerinde tekstür bileşenleri (kil, silt ve kum içeriği), tarla kapasitesi (TK), daimi solma noktası (DSN), pH, elektriksel iletkenlik (EC) ve toplam azot (NT) ve bozulmamış toprak örneklerinde de hacim ağırlığı (HA) belirlenmiştir. Yarayışlı su içeriği (YSİ), makroporozite (MakP) ve havalanma kapasitesine (HK) ait değerler ise bozulmuş ve bozulmamış toprak örneklerinde toprak su tutma ile ilişkili gerçekleştirilen analiz sonuçları kullanılarak hesaplanmıştır. Çalışma sonucunda daimi solma noktası, yarayışlı su içeriği, hacim ağırlığı, pH, elektriksel iletkenlik ve toplam azot üzerine toprak derinliklerinin etkileri ve silt içeriği, kum içeriği, tarla kapasitesi, daimi solma noktası, yarayışlı su içeriği, hacim ağırlığı, havalanma kapasitesi ve pH üzerine de sulama yönetimlerinin etkileri istatistiksel olarak önemli bulunmuştur. Hacim ağırlığı ve pH üzerine toprak derinliği x sulama yönetimi (D x SY) interaksiyonun etkileri önemli bulunurken, kil içeriği ve makroporozite üzerine herhangi bir uygulamanın etkisi önemli bulunmamıştır. Fındık bahçesi topraklarında toprak derinliği ve sulama yönetimlerinin etkilerine bağlı olarak hacim ağırlığının bitki kök gelişimini etkileyebilecek seviyede artmış olduğu belirlenmiştir. Ayrıca, % 100 sulama yönetiminin Kontrol uygulamasına benzer etkilerinin olduğu belirlenmiştir. %100 sulama yönetimi bitki kök gelişimine karşı daha az mekaniksel direnç yaratarak bitki kök bölgesinde daha yüksek bir havalanma kapasitesi sağlarken %130 sulama yönetimi havalanma kapasitesinin en fazla azaldığı uygulama olmuştur.

Supporting Institution

Yok

Project Number

Yok

Thanks

Yok

References

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration – Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper (No. 56).
  • Blake, G. R., & Hartge, K. H. (1986). Bulk Density and Particle Density. In A. Klute (Ed.), Methods of Soil Analysis (Part I): Physical and Mineralogical Methods (pp. 363-382). ASA and SSSA publications.
  • Bremmer, J. M. (1965). Nitrogen. In C. A. Black (Ed.), Method of Soil Analysis (Part II): Chemical and Microbiological Properties (pp. 1149-1178). Agron Inc.
  • Cristofori, V., Muleo, R., Bignami, C., & Rugini, E. (2014). Long-term evaluation of hazelnut response to drip irrigation. Acta Horticulturae, 1052, 179–185. https://doi.org/10.17660/actahortic.2014.1052.23.
  • Deitch, M. J., Sapundjieff, M. J., & Feirer, S. T. (2017). Characterizing precipitation variability and trends in the world’s mediterranean-climate areas. Water, 9, 1–21. https://doi.org/10.3390/w9040259.
  • Dexter, A. R., & Czyz, E. A. (2007). Applications of S-theory in the study of soil physical degradation and its consequences. Land Degradation & Development, 18, 369-381.
  • Dexter, A. R., Czyz, E. A., Richard, G., & Reszkowska, A. (2008). A user-friendly water retention function that takes account of the textural and structural pore spaces in soil. Geoderma, 143, 243-253.
  • Drewry, J. J., Cameron, K. C., & Buchan, G. D. (2008). Pasture yield and soil physical property responses to soil compaction from treading and grazing — a review. Australian Journal of Soil Research, 46, 237-256.
  • Garreaud, R., Alvarez-Garreton, C., Barichivich, J., Boisier, J. P., Christie, D., Galleguillos, M., LeQuesne, C., McPhee, J., & Zambrano-Bigiarini, M. (2017). The 2010–2015 mega drought in Central Chile: impacts on regional hydroclimate and vegetation. Hydrology and Earth System Sciences Discussions, 21, 6307-6327. https://doi.org/10.5194/hess-21-6307-2017.
  • Gee, G. W., & Bauder, J. W. (1986). Particle-Size Analysis. In A. Klute (Ed.), Methods of Soil Analysis (Part I): Physical and Mineralogical Methods (pp. 383-411). ASA and SSSA publications.
  • Ghirardello, D., Bertolino, M., Belviso, S., Dal Bello, B., Giordano, M., Rolle, L., Gerbi, V., Antonucci, M., Spigolon, N., & Zeppa, G. (2016). Phenolic composition, antioxidant capacity and hexanal content of hazelnuts (Corylus avellana L.) as affected by different storage conditions. Postharvest Biology and Technology, 112, 95–104. https://doi.org/10.1016/j.postharvbio.2015.09.039.
  • Hazelton, P. A., & Murphy, B. W. (2007). Interpreting Soil Test Results. What Do All the Numbers Mean? CSIRO Publishing.
  • Hendershot, W. H., Lalande, H., & Duquette, M. (1993). Soil reaction and exchangeable acidity. In M. R. Carter (Ed.), Soil Sampling and Methods of Analysis (pp. 141-145). Lewis Publishers.
  • Klute, A. (1986). Water Retention: Laboratory methods. In A. Klute (Ed.), Methods of Soil Analysis (Part I): Physical and Mineralogical Methods (pp. 635-662). ASA and SSSA publications.
  • Liu, J., Xing, J., Fang, J., Ai, P., & Cheng, Y. (2018). New insight into ovary abortion during ovary development of hazelnut through a combined proteomic and transcriptomic analysis. Scientia Horticulturae, 234, 36–48. https://doi.org/10.1016/j.scienta.2018.02.003.
  • Müftüoğlu, N. M., Türkmen, C., & Çıkılı, Y. (2014). Toprak ve Bitkide Verimlilik Analizleri, 2. baskı. Nobel Akademik Yayıncılık.
  • Ortega-Farias, S., Villalobos-Soublett, E., Riveros-Burgos, C., Zuniga, M., & Ahumada-Orellana, L. E. (2020). Effect of irrigation cut-off strategies on yield, water productivity and gas exchange in a drip-irrigated hazelnut (Corylus avellana L. cv. Tonda di Giffoni) orchard under semiarid conditions. Agricultural Water Management, 238, 106173. https://doi.org/10.1016/j.agwat.2020.106173.
  • Pannico, A., Cirillo, C., Giaccone, M., Scognamiglio, P., Romano, R., Caporaso, N., Sacchi, R., & Basile, B. (2017). Fruit position within the canopy affects kernel lipid composition of hazelnuts. Journal of the Science of Food and Agriculture, 97, 4790–4799. https://doi.org/10.1002/jsfa.8348.
  • Reynolds, W. D., Drury, C. F., Yang, X. M., & Tan, C. S. (2008). Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma, 146, 466-474.
  • Reynolds, W. D., Drury, C. F., Yang, X. M., Fox, C. A., Tan, C. S., & Zhang, T. Q. (2007). Land management effects on the near-surface physical quality of a clay loam soil. Soil and Tillage Research, 96, 316-330.
  • Rhoades, J. D. (1986). Soluble Salts. In A. Klute (Ed.), Methods of Soil Analysis (Part II): Chemical and Microbiological Properties (pp. 167-179). ASA and SSSA publications.
  • Roco, L., Poblete, D., Meza, F., & Kerrigan, G. ( 2016). Farmers options to address water scarcity in a changing climate: case studies from two basins in Mediterranean Chile. Environmental Management, 58, 958–971. https://doi.org/10.1007/s00267-016-0759-2.
  • Stolpe, N., & Undurraga, P. (2016). Long term climatic trends in Chile and effects on soil moisture and temperature regimes. Chilean Journal of Agricultural Research, 76, 487–496. https://doi.org/10.4067/S0718-58392016000400013.
  • Ustaoğlu, B. (2009). Türkiye’de İklim Değişikliğinin Fındık Tarımına Olası Etkileri [Doktora Tezi, İstanbul Teknik Üniversitesi]. https://tez.yok.gov.tr/UlusalTezMerkezi/.
  • White, R. E. (2006). Principles and Practice of Soil Science, 4th edition. Blackwell Publishing.

The Effects of Different Irrigation Managements on Some Soil Physical and Chemical Properties in Hazelnut (Corylus avellana L.) Orchard

Year 2022, , 508 - 519, 15.12.2022
https://doi.org/10.24180/ijaws.1195378

Abstract

This study was carried out in the Tekkeköy district of Samsun province to investigate the effects of different irrigation managements (control, 70% irrigation, 100% irrigation, 130% irrigation) on hazelnut orchard. After two years of irrigation management, disturbed and undisturbed soil samples were taken from two different soil depths (0-15 cm and 15-30 cm). Texture components (clay, silt, and sand content), field capacity (FC), permanent wilting point (PWP), pH, electrical conductivity (EC), and total nitrogen (NT) in disturbed soil samples and bulk density (BD) in undisturbed soil samples were determined. The values of available water content (AWC), macroporosity (MacP), and aeration capacity (HC) were calculated using the results of the analysis carried out concerning soil water retention in disturbed and undisturbed soil samples. As a result of the study, the effects of soil depths on permanent wilting point, available water content, bulk density, pH, electrical conductivity, and total nitrogen and of irrigation managements on silt content, sand content, field capacity, permanent wilting point, available water content, bulk density, aeration capacity, and pH were found to be statistically significant. While the effects of soil depth x irrigation management (D x SY) interaction on bulk density and pH were significant, the effect of any treatment on clay content and macroporosity was not significant. It has been determined that the bulk density of the hazelnut orchard soils, depending on the effects of soil depth and irrigation management, has increased at a level that the plant root development can be affected. Also, it was determined that 100% irrigation management had similar effects to the control treatment. While 100% irrigation management provided a higher aeration capacity in the plant root zone by creating less mechanical resistance to plant root growth, 130% irrigation management was the treatment in which the aeration capacity decreased the most.

Project Number

Yok

References

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration – Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper (No. 56).
  • Blake, G. R., & Hartge, K. H. (1986). Bulk Density and Particle Density. In A. Klute (Ed.), Methods of Soil Analysis (Part I): Physical and Mineralogical Methods (pp. 363-382). ASA and SSSA publications.
  • Bremmer, J. M. (1965). Nitrogen. In C. A. Black (Ed.), Method of Soil Analysis (Part II): Chemical and Microbiological Properties (pp. 1149-1178). Agron Inc.
  • Cristofori, V., Muleo, R., Bignami, C., & Rugini, E. (2014). Long-term evaluation of hazelnut response to drip irrigation. Acta Horticulturae, 1052, 179–185. https://doi.org/10.17660/actahortic.2014.1052.23.
  • Deitch, M. J., Sapundjieff, M. J., & Feirer, S. T. (2017). Characterizing precipitation variability and trends in the world’s mediterranean-climate areas. Water, 9, 1–21. https://doi.org/10.3390/w9040259.
  • Dexter, A. R., & Czyz, E. A. (2007). Applications of S-theory in the study of soil physical degradation and its consequences. Land Degradation & Development, 18, 369-381.
  • Dexter, A. R., Czyz, E. A., Richard, G., & Reszkowska, A. (2008). A user-friendly water retention function that takes account of the textural and structural pore spaces in soil. Geoderma, 143, 243-253.
  • Drewry, J. J., Cameron, K. C., & Buchan, G. D. (2008). Pasture yield and soil physical property responses to soil compaction from treading and grazing — a review. Australian Journal of Soil Research, 46, 237-256.
  • Garreaud, R., Alvarez-Garreton, C., Barichivich, J., Boisier, J. P., Christie, D., Galleguillos, M., LeQuesne, C., McPhee, J., & Zambrano-Bigiarini, M. (2017). The 2010–2015 mega drought in Central Chile: impacts on regional hydroclimate and vegetation. Hydrology and Earth System Sciences Discussions, 21, 6307-6327. https://doi.org/10.5194/hess-21-6307-2017.
  • Gee, G. W., & Bauder, J. W. (1986). Particle-Size Analysis. In A. Klute (Ed.), Methods of Soil Analysis (Part I): Physical and Mineralogical Methods (pp. 383-411). ASA and SSSA publications.
  • Ghirardello, D., Bertolino, M., Belviso, S., Dal Bello, B., Giordano, M., Rolle, L., Gerbi, V., Antonucci, M., Spigolon, N., & Zeppa, G. (2016). Phenolic composition, antioxidant capacity and hexanal content of hazelnuts (Corylus avellana L.) as affected by different storage conditions. Postharvest Biology and Technology, 112, 95–104. https://doi.org/10.1016/j.postharvbio.2015.09.039.
  • Hazelton, P. A., & Murphy, B. W. (2007). Interpreting Soil Test Results. What Do All the Numbers Mean? CSIRO Publishing.
  • Hendershot, W. H., Lalande, H., & Duquette, M. (1993). Soil reaction and exchangeable acidity. In M. R. Carter (Ed.), Soil Sampling and Methods of Analysis (pp. 141-145). Lewis Publishers.
  • Klute, A. (1986). Water Retention: Laboratory methods. In A. Klute (Ed.), Methods of Soil Analysis (Part I): Physical and Mineralogical Methods (pp. 635-662). ASA and SSSA publications.
  • Liu, J., Xing, J., Fang, J., Ai, P., & Cheng, Y. (2018). New insight into ovary abortion during ovary development of hazelnut through a combined proteomic and transcriptomic analysis. Scientia Horticulturae, 234, 36–48. https://doi.org/10.1016/j.scienta.2018.02.003.
  • Müftüoğlu, N. M., Türkmen, C., & Çıkılı, Y. (2014). Toprak ve Bitkide Verimlilik Analizleri, 2. baskı. Nobel Akademik Yayıncılık.
  • Ortega-Farias, S., Villalobos-Soublett, E., Riveros-Burgos, C., Zuniga, M., & Ahumada-Orellana, L. E. (2020). Effect of irrigation cut-off strategies on yield, water productivity and gas exchange in a drip-irrigated hazelnut (Corylus avellana L. cv. Tonda di Giffoni) orchard under semiarid conditions. Agricultural Water Management, 238, 106173. https://doi.org/10.1016/j.agwat.2020.106173.
  • Pannico, A., Cirillo, C., Giaccone, M., Scognamiglio, P., Romano, R., Caporaso, N., Sacchi, R., & Basile, B. (2017). Fruit position within the canopy affects kernel lipid composition of hazelnuts. Journal of the Science of Food and Agriculture, 97, 4790–4799. https://doi.org/10.1002/jsfa.8348.
  • Reynolds, W. D., Drury, C. F., Yang, X. M., & Tan, C. S. (2008). Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma, 146, 466-474.
  • Reynolds, W. D., Drury, C. F., Yang, X. M., Fox, C. A., Tan, C. S., & Zhang, T. Q. (2007). Land management effects on the near-surface physical quality of a clay loam soil. Soil and Tillage Research, 96, 316-330.
  • Rhoades, J. D. (1986). Soluble Salts. In A. Klute (Ed.), Methods of Soil Analysis (Part II): Chemical and Microbiological Properties (pp. 167-179). ASA and SSSA publications.
  • Roco, L., Poblete, D., Meza, F., & Kerrigan, G. ( 2016). Farmers options to address water scarcity in a changing climate: case studies from two basins in Mediterranean Chile. Environmental Management, 58, 958–971. https://doi.org/10.1007/s00267-016-0759-2.
  • Stolpe, N., & Undurraga, P. (2016). Long term climatic trends in Chile and effects on soil moisture and temperature regimes. Chilean Journal of Agricultural Research, 76, 487–496. https://doi.org/10.4067/S0718-58392016000400013.
  • Ustaoğlu, B. (2009). Türkiye’de İklim Değişikliğinin Fındık Tarımına Olası Etkileri [Doktora Tezi, İstanbul Teknik Üniversitesi]. https://tez.yok.gov.tr/UlusalTezMerkezi/.
  • White, R. E. (2006). Principles and Practice of Soil Science, 4th edition. Blackwell Publishing.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering (Other)
Journal Section Toprak Bilimi ve Bitki Besleme
Authors

Edip Erhan Küçük 0000-0002-1393-9231

Mustafa Sağlam 0000-0002-7564-5079

Serkan İç 0000-0001-8072-863X

Project Number Yok
Publication Date December 15, 2022
Submission Date October 27, 2022
Acceptance Date December 10, 2022
Published in Issue Year 2022

Cite

APA Küçük, E. E., Sağlam, M., & İç, S. (2022). Farklı Sulama Yönetimlerinin Fındık (Corylus avellana L.) Bahçesinde Bazı Toprak Fiziksel ve Kimyasal Özelliklerine Etkileri. International Journal of Agricultural and Wildlife Sciences, 8(3), 508-519. https://doi.org/10.24180/ijaws.1195378

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a