Simulation of action potential and wake trigger processes in MATLAB environment
Year 2022,
Volume: 6 Issue: 1, 29 - 37, 30.03.2022
Murat Beken
,
Önder Eyecioglu
,
Batuhan Hangün
,
Nursaç Kurt
Abstract
In this study, it is aimed to simulate the action potentials in MATLAB’s Simulink environment. For the simulation carried out, firstly, the electric current of the potential flow in the cell membrane was modelled. Transmission and excitation of Action Potentials were studied in the simulation. The relationship between excitation and conduction timing action potentials is shown.
References
- 1. Yalcinkaya, F., & Unsal, H. Matlab/Simulink Based Comparative Analysis of the Effect of Ion Concentration on Action Potantial by Using Hodgkin-Huxley and Morris-Lecar Neuron Models. In 2017 21st National Biomedical Engineering Meeting (BIYOMUT) (pp.i-iv). IEEE.
- 2. Armstrong, C.M. and F. Bezanilla, Charge movement associated with the opening
and closing of the activation gates of the Na channels. J Gen Physio, 1974. 63(5): p.533-¬52
- 3. Ashmore, J.F., Forward and reverse transduction in the mammalian cochlea Neurosci Res Suppl, 1990. 12: p. S39-¬‐50
- 4. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117(4), 500.
- 5. Ernst Klett Verlag GmbH, Stuttgart 2018 | www.klett.de | Alle Rechte vorbehalten Von dieser Druckvorlage ist die Vervielfältigung für den eigenen Unterrichtsgebrauch gestattet. Die Kopiergebühren sind abgegolten. Die Entstehung des Aktionspotentials, (Lesson note)
- 6. Cole, K.S., Mostly membranes (Kenneth S. Cole). Annu Rev Physiol, 1979. 41: p. 1-¬‐24.
- 7. Hodgkin, A.L. and A.F. Huxley, A quantitative description of membrane current and
its application to conduction and excitation in nerve. J Physiol, 1952. 117(4): p.
500-¬‐44.
- 8. Nether, E. and B. Salman, Single-¬channel currents recorded from membrane of
denervated frog muscle fibres. Nature, 1976. 260(5554): p. 799-¬‐802.
- 9. Santos-¬Sachi, J., S. Kakheti, and Stochastic, Effects of membrane potential on
the voltage dependence of motility related charge in outer hair cells of the guineapig. J. Physiol, 1998. 510 (Pt 1): p. 225-¬‐35
- 10. Santos-¬‐Sachi, J., Reversible inhibition of voltage-¬dependent outer hair cell motility
and capacitance. J Neurosci, 1991. 11(10): p. 3096-¬‐110.
- 11. Physics-Praktikum for students of medicine (Lesson note)
- 12. Engelhardt, Breves, Physiology of Pets, Enke Verlag 2005.
- 13. Van Schaik, A. (2001). Building blocks for electronic spiking neural networks. Neural networks, 14(6-7), 617-628.
- 14. Tahayori, B., & Dokos, S. (2012). Optimal stimulus current waveshape for a Hodgkin-Huxley model neuron. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 4627-4630). IEEE.
- 15. Kirigeeganage, S., Jackson, D., Zurada, J. M., & Naber, J. (2018, December). Modeling the bursting behavior of the Hodgkin-Huxley neurons using genetic algorithm-based parameter search. In 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) (pp. 470-475). IEEE.
- 16. Beken, M., Gunhan, H.M., Akbulut, E., Çapraz, T. “Climate Control System for Cold Storage Depots”, International Journal of Engineering Science and Application, Vol. 1, No, 2, 2017.
Year 2022,
Volume: 6 Issue: 1, 29 - 37, 30.03.2022
Murat Beken
,
Önder Eyecioglu
,
Batuhan Hangün
,
Nursaç Kurt
Supporting Institution
Nişantaşı Üniversitesi BAP
References
- 1. Yalcinkaya, F., & Unsal, H. Matlab/Simulink Based Comparative Analysis of the Effect of Ion Concentration on Action Potantial by Using Hodgkin-Huxley and Morris-Lecar Neuron Models. In 2017 21st National Biomedical Engineering Meeting (BIYOMUT) (pp.i-iv). IEEE.
- 2. Armstrong, C.M. and F. Bezanilla, Charge movement associated with the opening
and closing of the activation gates of the Na channels. J Gen Physio, 1974. 63(5): p.533-¬52
- 3. Ashmore, J.F., Forward and reverse transduction in the mammalian cochlea Neurosci Res Suppl, 1990. 12: p. S39-¬‐50
- 4. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117(4), 500.
- 5. Ernst Klett Verlag GmbH, Stuttgart 2018 | www.klett.de | Alle Rechte vorbehalten Von dieser Druckvorlage ist die Vervielfältigung für den eigenen Unterrichtsgebrauch gestattet. Die Kopiergebühren sind abgegolten. Die Entstehung des Aktionspotentials, (Lesson note)
- 6. Cole, K.S., Mostly membranes (Kenneth S. Cole). Annu Rev Physiol, 1979. 41: p. 1-¬‐24.
- 7. Hodgkin, A.L. and A.F. Huxley, A quantitative description of membrane current and
its application to conduction and excitation in nerve. J Physiol, 1952. 117(4): p.
500-¬‐44.
- 8. Nether, E. and B. Salman, Single-¬channel currents recorded from membrane of
denervated frog muscle fibres. Nature, 1976. 260(5554): p. 799-¬‐802.
- 9. Santos-¬Sachi, J., S. Kakheti, and Stochastic, Effects of membrane potential on
the voltage dependence of motility related charge in outer hair cells of the guineapig. J. Physiol, 1998. 510 (Pt 1): p. 225-¬‐35
- 10. Santos-¬‐Sachi, J., Reversible inhibition of voltage-¬dependent outer hair cell motility
and capacitance. J Neurosci, 1991. 11(10): p. 3096-¬‐110.
- 11. Physics-Praktikum for students of medicine (Lesson note)
- 12. Engelhardt, Breves, Physiology of Pets, Enke Verlag 2005.
- 13. Van Schaik, A. (2001). Building blocks for electronic spiking neural networks. Neural networks, 14(6-7), 617-628.
- 14. Tahayori, B., & Dokos, S. (2012). Optimal stimulus current waveshape for a Hodgkin-Huxley model neuron. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 4627-4630). IEEE.
- 15. Kirigeeganage, S., Jackson, D., Zurada, J. M., & Naber, J. (2018, December). Modeling the bursting behavior of the Hodgkin-Huxley neurons using genetic algorithm-based parameter search. In 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) (pp. 470-475). IEEE.
- 16. Beken, M., Gunhan, H.M., Akbulut, E., Çapraz, T. “Climate Control System for Cold Storage Depots”, International Journal of Engineering Science and Application, Vol. 1, No, 2, 2017.