Research Article
BibTex RIS Cite

Determination of Engineering Faculty Students' Perceptions of Mathematical Model and Modelling through Metaphors

Year 2024, Volume: 11 Issue: 4, 137 - 149
https://doi.org/10.17278/ijesim.1548078

Abstract

The aim of this study is to determine engineering faculty students' perceptions of model and mathematical modelling through metaphors. For this purpose, a phenomenological design was used in the study. The study group of the research consists of 48 volunteer engineer candidates studying in the departments of automotive and biomedical engineering at a state university in the Marmara region. The engineer candidates participating in the study were asked to complete the sentences’ model/mathematical modelling is like ....; because ...’. The data obtained from the research were analyzed by content analysis method and categories were formed by combining similar metaphor codes. As a result of the analyses, it was revealed that the prospective engineers had very positive concepts about model and mathematical modelling. In addition, the positive attitudes of the candidates towards these concepts contribute to the shaping of their professional competencies and how these approaches can be integrated into the educational processes have been defined in detail. In the light of the results obtained, suggestions are presented for researchers who want to work in this field.

References

  • Altun, M. (2020). Matematik Okuryazarlığı El Kitabı. Ankara: Aktüel Yayıncılık.
  • Arı, A. A., Demir, B., ve Çakır, E. (2023). Matematik öğretmeni adaylarının matematiksel model ve modellemeye ilişkin algıları: Bir metafor çalışması. Kocaeli Üniversitesi Eğitim Dergisi, 6(1), 156-176. https://doi.org/10.33400/kuje.1230424
  • Aydoğan Yenmez, A. (2017). Teknolojinin matematiksel modelleme sürecine etkileri. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi (26), 602-646. https://doi.org/10.14520/adyusbd.306665
  • Banks, F., & Barlex, D. (2014). Teaching STEM in the secondary school: How teachers and schools can meet the challenge. Routledge.
  • Black, M. (1962). Models and Metaphors: Studies in Language and Philosophy. Cornell University Press.
  • Broadbridge, P., & Henderson, S. (2008). Mathematics education for 21st century engineering students. In Mathematics: Traditionsand [New] Practices. Retrieved from https://researchoutput.csu.edu.au/ws/portalfiles/portal/9310043
  • Bukova Güzel, E., Tekin Dede, A., Hıdıroğlu, Ç. N., Kula Ünver, S., ve Özaltun Çelik, A. (2018). Matematiksel modelleme problemleri. E. Bukova Güzel (Ed.), Matematik eğitiminde matematiksel modelleme içinde (s. 146). Ankara: Anı Yayıncılık.
  • Czocher, J. (2017). How can emphasizing mathematical modeling principles benefit students in a traditionally taught differential equationscoures? The Journal of Mathematics Behavior, 45, 78–94.
  • Czocher, J., Melhuish, K., & Kandasamy, S. S. (2019). Building mathematics self-efficacy of STEM undergraduates through mathematical modeling. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2019.1634223
  • Eccles, J. S., & Wang, M.-T. (2016). What motivates females and males topursuecareers in mathematics and science? International Journal of Behavioral Development, 40(2), 100–106
  • Engineering Council. (2000). Measuring the mathematics problem. Retrieved from https://www.engc.org.uk/
  • European Network for Accreditation of Engineering Education (2018). EUR-ACE frame work standards and guidlines. https://www.enaee.eu/eur-ace-system/standards-and-guidelines/#standards-and-guidelines-foraccreditation-of-engineering-programmes.
  • Faulkner, G., Earl, S. R., & Curran, T. (2019). The importance of mathematical modeling skills for engineering students. Journal of Engineering Education, 108(1), 91-112. https://doi.org/10.1002/jee.20253
  • Frejd, P. (2013). Modes of modelling assessment—A literature review. Educational Studies in Mathematics, 84(3), 413-438. https://doi.org/10.1007/s10649-013-9491-5
  • Geisinger, B. N., & Rajraman, D. (2013). Why they leave: Understanding student attrition from engineering majors. International Journal of Engineering Education, 29(4), 914-925. Retrieved from https://www.ijee.ie/
  • Gentner, D., & Grudin, J. (1985). The evolution of mental models. In Proceedings of the International Conference on Systems, Man, and Cybernetics.
  • Gilbert, J., & Boulter, C. (2000). Developing Models in Science Education. Springer.
  • Güner, N. (2013). Seniorengineering students' views on mathematics courses in engineering. College Student Journal, 47(3).
  • Hallström, J., & Schönborn, K. J. (2019). Models and modelling for authentic STEM education: Reinforcing the argument. International Journal of STEM Education, 6(22). https://doi.org/10.1186/s40594-019-0178-z
  • Heilio, M. (2011). Modelling and the educational challenge in industrial mathematics. In Trends in Teachingand Learning of Mathematical Modelling (pp. 479-488). Springer.
  • Hıdıroğlu, Ç. N. (2012). Teknoloji destekli ortamda matematiksel modelleme etkinliklerinin çözüm süreçlerinin analiz edilmesi: Yaklaşım ve düşünme süreçleri üzerine bir açıklama [Yayınlanmamış yüksek lisans tezi]. Dokuz Eylül Üniversitesi, İzmir.
  • International Engineering Alliance (2014). 25 years of the Washington accords. (pp. 1–25). Retrieved fromhttps://www.ieagreements.org/assets/Uploads/Documents/History/25YearsWashingtonAccord-A5booklet-FINAL.pdf.
  • Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education.International Journal of STEM Education, 3(11), 1–11.
  • Kent, P., & Noss, R. (2003). Mathematics in the university education of engineers: A report to the OveArup Foundation. London: OveArup Foundation. Retrieved from https://discovery.ucl.ac.uk/id/eprint/10006676/
  • Kertil, M. (2008). Matematik öğretmen adaylarının problem çözme becerilerinin modelleme sürecinde incelenmesi [Yayınlanmamış yüksek lisans tezi]. Marmara Üniversitesi, İstanbul.
  • Kuzu, Ç. İ. (2021). Mühendislik fakültesi öğrencilerinin matematik kavramına ilişkin metaforik algıları. Eğitim ve Bilim, 111.
  • Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. University of Chicago Press.
  • Leary, M. R., & Schunk, D. H. (2016). The Power of Metaphor: Examining Its Influence on Social Life. American Psychological Association.
  • Lesh, R., & Doerr, H. M. (2003). Beyond Constructivism: Models and Modeling Perspectives on Mathematics Problem Solving, Learning, and Teaching. Routledge.
  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. Kelly & R. Lesh (Eds.), Researchdesign in mathematics and science education (pp. 591–646). Mahwah, NJ: Lawrence Erlbaum Associates, Inc..
  • Michelsen, C. (2006). Functions: a modellingtool in mathematics and science. ZDM, 38(3), 269-280.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded source book (2nd ed.). Sage.
  • Miller, S. (1987). Some comments on the utility of metaphors for educational theory and practice. Educational Theory, 37, 219-227. https://doi.org/10.1111/j.1741-5446.1987.00219.x
  • National Council of Teachers of Mathematics. (NCTM) (1989). Curriculum and evaluation standards for school. Reston, VA: NCTM.
  • Niss, M. (1987). Applications and modelling in mathematics education. Educational Studies in Mathematics, 18(4), 401-419.
  • Rasmussen, C., & Kwon, O. N. (2007). An inquiry oriented approach tounder graduate mathematics. Journalof Mathematical Behavior, 26, 189–194.
  • Saban, A. (2008). İlköğretim I. kademe öğretmen ve öğrencilerinin bilgi kavramına ilişkin sahip oldukları zihinsel imgeler. İlköğretim Online, 7(2), 421-455.
  • Saka, E., ve Çelik, D. (2016). Öğretmen adaylarının matematiksel modelleme problemlerini çözme sürecinde teknolojinin rolü. Adıyaman University Journal of Educational Sciences, 8(2), 116-149.
  • Schön, D. A. (1983). The Reflective Practitioner: How Professionals Think in Action. Basic Books.
  • Sokolowski, A. (2015). The effect of math modeling on student's emerging understanding. The IAFOR Journal of Education, 3(3), 142–156.
  • Su, R., Rounds, J., & Armstrong, P. I. (2009). Men and thinks, women and people: A meta-analysis of sex differences in interest. Psychological Bulletin, 1135(6), 859–884.
  • Yıldırım, A., ve Şimşek, H. (2018). Sosyal bilimlerde nitel araştırma yöntemleri (11. baskı). Seçkin Yayıncılık. Yıldırım, B., ve Türk, C. (2018). STEM uygulamalarının kız öğrencilerin tutum ve mühendislik algılarına etkisi. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 30, 842-884. https://doi.org/10.14520/adyusbd.368452.

Mühendislik Fakültesi Öğrencilerinin Matematiksel Model ve Modellemeye Yönelik Algılarının Metaforlar Aracılığıyla Belirlenmesi

Year 2024, Volume: 11 Issue: 4, 137 - 149
https://doi.org/10.17278/ijesim.1548078

Abstract

Bu çalışmanın amacı, mühendislik fakültesi öğrencilerin model ve matematiksel modelleme algılarının metaforlar yoluyla belirlenmesidir. Bu amaç doğrultusunda çalışmada olgu bilim deseni kullanılmıştır. Araştırmanın çalışma grubunu Marmara bölgesindeki bir devlet üniversitesinde otomotiv ve biyomedikal mühendisliği bölümünde öğrenim gören 48 gönüllü mühendis adayı oluşturmaktadır. Çalışmaya katılan mühendis adaylarından; “model/matematiksel modelleme …. gibidir; çünkü …” cümlelerini tamamlamaları istenmiştir. Araştırmadan elde edilen veriler içerik analiz yöntemiyle analiz edilmiş ve benzer metafor kodları bir araya getirilerek kategoriler oluşturulmuştur. Yapılan analizler sonucunda, mühendis adaylarının model ve matematiksel modelleme hakkında oldukça olumlu kavramlara sahip oldukları ortaya çıkmıştır. Bununla birlikte, adayların bu kavramlara yönelik olumlu tutumlarının mesleki yetkinliklerinin şekillenmesine nasıl katkı sağladığını ve bu yaklaşımların eğitim süreçlerine nasıl entegre edilebileceğini ayrıntılı olarak tanımlanmıştır. Elde edilmiş olan sonuçlar ışığında bu alanda çalışma yapmak isteyen araştırmacılara öneriler sunulmuştur.

References

  • Altun, M. (2020). Matematik Okuryazarlığı El Kitabı. Ankara: Aktüel Yayıncılık.
  • Arı, A. A., Demir, B., ve Çakır, E. (2023). Matematik öğretmeni adaylarının matematiksel model ve modellemeye ilişkin algıları: Bir metafor çalışması. Kocaeli Üniversitesi Eğitim Dergisi, 6(1), 156-176. https://doi.org/10.33400/kuje.1230424
  • Aydoğan Yenmez, A. (2017). Teknolojinin matematiksel modelleme sürecine etkileri. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi (26), 602-646. https://doi.org/10.14520/adyusbd.306665
  • Banks, F., & Barlex, D. (2014). Teaching STEM in the secondary school: How teachers and schools can meet the challenge. Routledge.
  • Black, M. (1962). Models and Metaphors: Studies in Language and Philosophy. Cornell University Press.
  • Broadbridge, P., & Henderson, S. (2008). Mathematics education for 21st century engineering students. In Mathematics: Traditionsand [New] Practices. Retrieved from https://researchoutput.csu.edu.au/ws/portalfiles/portal/9310043
  • Bukova Güzel, E., Tekin Dede, A., Hıdıroğlu, Ç. N., Kula Ünver, S., ve Özaltun Çelik, A. (2018). Matematiksel modelleme problemleri. E. Bukova Güzel (Ed.), Matematik eğitiminde matematiksel modelleme içinde (s. 146). Ankara: Anı Yayıncılık.
  • Czocher, J. (2017). How can emphasizing mathematical modeling principles benefit students in a traditionally taught differential equationscoures? The Journal of Mathematics Behavior, 45, 78–94.
  • Czocher, J., Melhuish, K., & Kandasamy, S. S. (2019). Building mathematics self-efficacy of STEM undergraduates through mathematical modeling. International Journal of Mathematical Education in Science and Technology. https://doi.org/10.1080/0020739X.2019.1634223
  • Eccles, J. S., & Wang, M.-T. (2016). What motivates females and males topursuecareers in mathematics and science? International Journal of Behavioral Development, 40(2), 100–106
  • Engineering Council. (2000). Measuring the mathematics problem. Retrieved from https://www.engc.org.uk/
  • European Network for Accreditation of Engineering Education (2018). EUR-ACE frame work standards and guidlines. https://www.enaee.eu/eur-ace-system/standards-and-guidelines/#standards-and-guidelines-foraccreditation-of-engineering-programmes.
  • Faulkner, G., Earl, S. R., & Curran, T. (2019). The importance of mathematical modeling skills for engineering students. Journal of Engineering Education, 108(1), 91-112. https://doi.org/10.1002/jee.20253
  • Frejd, P. (2013). Modes of modelling assessment—A literature review. Educational Studies in Mathematics, 84(3), 413-438. https://doi.org/10.1007/s10649-013-9491-5
  • Geisinger, B. N., & Rajraman, D. (2013). Why they leave: Understanding student attrition from engineering majors. International Journal of Engineering Education, 29(4), 914-925. Retrieved from https://www.ijee.ie/
  • Gentner, D., & Grudin, J. (1985). The evolution of mental models. In Proceedings of the International Conference on Systems, Man, and Cybernetics.
  • Gilbert, J., & Boulter, C. (2000). Developing Models in Science Education. Springer.
  • Güner, N. (2013). Seniorengineering students' views on mathematics courses in engineering. College Student Journal, 47(3).
  • Hallström, J., & Schönborn, K. J. (2019). Models and modelling for authentic STEM education: Reinforcing the argument. International Journal of STEM Education, 6(22). https://doi.org/10.1186/s40594-019-0178-z
  • Heilio, M. (2011). Modelling and the educational challenge in industrial mathematics. In Trends in Teachingand Learning of Mathematical Modelling (pp. 479-488). Springer.
  • Hıdıroğlu, Ç. N. (2012). Teknoloji destekli ortamda matematiksel modelleme etkinliklerinin çözüm süreçlerinin analiz edilmesi: Yaklaşım ve düşünme süreçleri üzerine bir açıklama [Yayınlanmamış yüksek lisans tezi]. Dokuz Eylül Üniversitesi, İzmir.
  • International Engineering Alliance (2014). 25 years of the Washington accords. (pp. 1–25). Retrieved fromhttps://www.ieagreements.org/assets/Uploads/Documents/History/25YearsWashingtonAccord-A5booklet-FINAL.pdf.
  • Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education.International Journal of STEM Education, 3(11), 1–11.
  • Kent, P., & Noss, R. (2003). Mathematics in the university education of engineers: A report to the OveArup Foundation. London: OveArup Foundation. Retrieved from https://discovery.ucl.ac.uk/id/eprint/10006676/
  • Kertil, M. (2008). Matematik öğretmen adaylarının problem çözme becerilerinin modelleme sürecinde incelenmesi [Yayınlanmamış yüksek lisans tezi]. Marmara Üniversitesi, İstanbul.
  • Kuzu, Ç. İ. (2021). Mühendislik fakültesi öğrencilerinin matematik kavramına ilişkin metaforik algıları. Eğitim ve Bilim, 111.
  • Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. University of Chicago Press.
  • Leary, M. R., & Schunk, D. H. (2016). The Power of Metaphor: Examining Its Influence on Social Life. American Psychological Association.
  • Lesh, R., & Doerr, H. M. (2003). Beyond Constructivism: Models and Modeling Perspectives on Mathematics Problem Solving, Learning, and Teaching. Routledge.
  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. Kelly & R. Lesh (Eds.), Researchdesign in mathematics and science education (pp. 591–646). Mahwah, NJ: Lawrence Erlbaum Associates, Inc..
  • Michelsen, C. (2006). Functions: a modellingtool in mathematics and science. ZDM, 38(3), 269-280.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded source book (2nd ed.). Sage.
  • Miller, S. (1987). Some comments on the utility of metaphors for educational theory and practice. Educational Theory, 37, 219-227. https://doi.org/10.1111/j.1741-5446.1987.00219.x
  • National Council of Teachers of Mathematics. (NCTM) (1989). Curriculum and evaluation standards for school. Reston, VA: NCTM.
  • Niss, M. (1987). Applications and modelling in mathematics education. Educational Studies in Mathematics, 18(4), 401-419.
  • Rasmussen, C., & Kwon, O. N. (2007). An inquiry oriented approach tounder graduate mathematics. Journalof Mathematical Behavior, 26, 189–194.
  • Saban, A. (2008). İlköğretim I. kademe öğretmen ve öğrencilerinin bilgi kavramına ilişkin sahip oldukları zihinsel imgeler. İlköğretim Online, 7(2), 421-455.
  • Saka, E., ve Çelik, D. (2016). Öğretmen adaylarının matematiksel modelleme problemlerini çözme sürecinde teknolojinin rolü. Adıyaman University Journal of Educational Sciences, 8(2), 116-149.
  • Schön, D. A. (1983). The Reflective Practitioner: How Professionals Think in Action. Basic Books.
  • Sokolowski, A. (2015). The effect of math modeling on student's emerging understanding. The IAFOR Journal of Education, 3(3), 142–156.
  • Su, R., Rounds, J., & Armstrong, P. I. (2009). Men and thinks, women and people: A meta-analysis of sex differences in interest. Psychological Bulletin, 1135(6), 859–884.
  • Yıldırım, A., ve Şimşek, H. (2018). Sosyal bilimlerde nitel araştırma yöntemleri (11. baskı). Seçkin Yayıncılık. Yıldırım, B., ve Türk, C. (2018). STEM uygulamalarının kız öğrencilerin tutum ve mühendislik algılarına etkisi. Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 30, 842-884. https://doi.org/10.14520/adyusbd.368452.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Mathematics Education
Journal Section Research Article
Authors

Hülya Sert Çelik 0000-0002-5021-7449

Barış Demir 0000-0001-6997-6413

Early Pub Date December 27, 2024
Publication Date
Submission Date September 11, 2024
Acceptance Date December 25, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

APA Sert Çelik, H., & Demir, B. (2024). Mühendislik Fakültesi Öğrencilerinin Matematiksel Model ve Modellemeye Yönelik Algılarının Metaforlar Aracılığıyla Belirlenmesi. International Journal of Educational Studies in Mathematics, 11(4), 137-149. https://doi.org/10.17278/ijesim.1548078