Research Article
BibTex RIS Cite

Constacyclic Codes Over 𝑭𝒒[𝒖] /βŒ©π’–πŸ‘ = 𝟎βŒͺ and Their Application of Constructing Quantum Codes

Year 2022, , 12 - 22, 16.01.2023
https://doi.org/10.53508/ijiam.1127019

Abstract

Let 𝑅 = πΉπ‘ž+uπΉπ‘ž+𝑒^2πΉπ‘ž, 𝑒^3=0 be a finite chain ring. In this paper, we give the structure of constacyclic codes over 𝑅 and obtain self-orthogonal codes over πΉπ‘ž by using the Gray map from 𝑅𝑛 to πΉπ‘ž^(3𝑛). As an application, we present a construction of quantum codes from the codes obtained from this class.

References

  • [1] M. Ashraf and G. Mohammad, Quantum codes over 𝐹𝑝 from cyclic codes over 𝐹𝑝[𝑒, 𝑣]/ βŒ©π‘’^2 βˆ’1, 𝑣^2 βˆ’ 1 βŒͺ . Cryptogr. Commun. 11(2019), pp. 325--335.
  • [2] A-R. Calderbank, E-M. Rains, P-M. Shor and N-J-A. Sloane, Quantum error correction via codes over GF(4) IEEE Trans. Inform. Theory, 44(1998), pp. 1369--1387.
  • [3] Z. Chen, K. Zhou and Q. Liao, Quantum identity authentication scheme of vehicular adhoc networks, Int. J. Theor. Phys. ,58(2019), pp. 40--57.
  • [4] J. Gao, Quantum codes from cyclic codes over πΉπ‘ž + π‘£πΉπ‘ž + 𝑣^2πΉπ‘ž + 𝑣^3πΉπ‘ž. Int. J. Quantum Inf. 8(2015), pp. 1550063(1-8).
  • [5] F. Ma, J. Gao and F-W. Fu, Constacyclic codes over the ring πΉπ‘ž + π‘£πΉπ‘ž + 𝑣2πΉπ‘ž and their applications of constructing new non-binary quantum codes, Quantum Inf. Process., 17, 122 (2018).
  • [6] Y. Gao, J. Gao and F-W. Fu, On Quantum codes from cyclic codes over the ring πΉπ‘ž + π‘£πΉπ‘ž + β‹― +π‘£π‘ŸπΉ π‘ž, Appl. Algebra Eng. Commun. Comput., 2(2019), pp. 161--174.
  • [7] M. Guzeltepe and M. Sari, Quantum codes from codes over the ring πΉπ‘ž + π›ΌπΉπ‘ž Quantum Inf. Process., 12(2019), 365.
  • [8] F. Ma, J. Gao and F-W. Fu, New non-binary quantum codes from constacyclic codes𝐹𝑝 [𝑒, 𝑣]/ βŒ©π‘’^2 βˆ’ 1, 𝑣^2 βˆ’ 1 βŒͺ, Adv. Math. Commun. 2(2019), pp. 421--434.
  • [9] J. Mi, X. Cao, S. Xu and G. Luo, Quantum codes from Hermitian dual-containing cyclic codes Int. J. Comput. Math., 3(2016).
  • [10] Shor, P.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 4(1995), 2493--2496.
  • [11] M. Γ–zen, N. Γ–zzaim and H. Ince, Quantum codes from cyclic codes over 𝐹3 + 𝑒𝐹3 + 𝑣𝐹3 +𝑒𝑣𝐹3, Int. Conf. Quantum Sci. Appl. J. Phys. Conf. Ser. 766(2016), pp. 012020-1--012020-6.
  • [12] H. Xiao, Z. Zhang and A. Chronopoulos, New construction of quantum error avoiding codes via group representation of quantum stabilizer, codes. Eur. Phys. J. C 77(2017), pp. 667--680.
  • [13] H. Xiao and Z. Zhang, Subcarrier multiplexing multiple-input multiple-output quantum key distribution with orthogonal quantum states, Quantum Inf. Process., 16(2017), pp.1--18 .
  • [14] X. Xin, Q. He, Z. Wang, Q. Yang and F. Li, Efficient arbitrated quantum signature scheme without entangled states, Mod. Phys. Lett. A 34(2019), 1950166.
  • [15] J. Gao , F.W. Fu, L. Xiao and R.K. Bandi, Double cyclic codes πΉπ‘ž + π‘’πΉπ‘ž + 𝑒^2πΉπ‘ž, Discrete Math. Algorithms Appl., 7(2015), pp. 1550058.
  • [16] W-C. Huffman and V. Pless, Fundamentals of Error Correcting Codes, The United states of America by Combridge. University Press, New york, 2003.
  • [17] Zheng, X., Bo, K.: Cyclic codes and πœ†_{1} + πœ†_{2}𝑒 + πœ†_{3}𝑣 + πœ†_{4}𝑒𝑣 βˆ’constacyclic codes over 𝐹𝑝 +𝑒𝐹𝑝 + 𝑣𝐹𝑝 + 𝑒𝑣𝐹𝑝. Appl. Math. Comput. 306(2017), pp. 86-91 .
Year 2022, , 12 - 22, 16.01.2023
https://doi.org/10.53508/ijiam.1127019

Abstract

References

  • [1] M. Ashraf and G. Mohammad, Quantum codes over 𝐹𝑝 from cyclic codes over 𝐹𝑝[𝑒, 𝑣]/ βŒ©π‘’^2 βˆ’1, 𝑣^2 βˆ’ 1 βŒͺ . Cryptogr. Commun. 11(2019), pp. 325--335.
  • [2] A-R. Calderbank, E-M. Rains, P-M. Shor and N-J-A. Sloane, Quantum error correction via codes over GF(4) IEEE Trans. Inform. Theory, 44(1998), pp. 1369--1387.
  • [3] Z. Chen, K. Zhou and Q. Liao, Quantum identity authentication scheme of vehicular adhoc networks, Int. J. Theor. Phys. ,58(2019), pp. 40--57.
  • [4] J. Gao, Quantum codes from cyclic codes over πΉπ‘ž + π‘£πΉπ‘ž + 𝑣^2πΉπ‘ž + 𝑣^3πΉπ‘ž. Int. J. Quantum Inf. 8(2015), pp. 1550063(1-8).
  • [5] F. Ma, J. Gao and F-W. Fu, Constacyclic codes over the ring πΉπ‘ž + π‘£πΉπ‘ž + 𝑣2πΉπ‘ž and their applications of constructing new non-binary quantum codes, Quantum Inf. Process., 17, 122 (2018).
  • [6] Y. Gao, J. Gao and F-W. Fu, On Quantum codes from cyclic codes over the ring πΉπ‘ž + π‘£πΉπ‘ž + β‹― +π‘£π‘ŸπΉ π‘ž, Appl. Algebra Eng. Commun. Comput., 2(2019), pp. 161--174.
  • [7] M. Guzeltepe and M. Sari, Quantum codes from codes over the ring πΉπ‘ž + π›ΌπΉπ‘ž Quantum Inf. Process., 12(2019), 365.
  • [8] F. Ma, J. Gao and F-W. Fu, New non-binary quantum codes from constacyclic codes𝐹𝑝 [𝑒, 𝑣]/ βŒ©π‘’^2 βˆ’ 1, 𝑣^2 βˆ’ 1 βŒͺ, Adv. Math. Commun. 2(2019), pp. 421--434.
  • [9] J. Mi, X. Cao, S. Xu and G. Luo, Quantum codes from Hermitian dual-containing cyclic codes Int. J. Comput. Math., 3(2016).
  • [10] Shor, P.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 4(1995), 2493--2496.
  • [11] M. Γ–zen, N. Γ–zzaim and H. Ince, Quantum codes from cyclic codes over 𝐹3 + 𝑒𝐹3 + 𝑣𝐹3 +𝑒𝑣𝐹3, Int. Conf. Quantum Sci. Appl. J. Phys. Conf. Ser. 766(2016), pp. 012020-1--012020-6.
  • [12] H. Xiao, Z. Zhang and A. Chronopoulos, New construction of quantum error avoiding codes via group representation of quantum stabilizer, codes. Eur. Phys. J. C 77(2017), pp. 667--680.
  • [13] H. Xiao and Z. Zhang, Subcarrier multiplexing multiple-input multiple-output quantum key distribution with orthogonal quantum states, Quantum Inf. Process., 16(2017), pp.1--18 .
  • [14] X. Xin, Q. He, Z. Wang, Q. Yang and F. Li, Efficient arbitrated quantum signature scheme without entangled states, Mod. Phys. Lett. A 34(2019), 1950166.
  • [15] J. Gao , F.W. Fu, L. Xiao and R.K. Bandi, Double cyclic codes πΉπ‘ž + π‘’πΉπ‘ž + 𝑒^2πΉπ‘ž, Discrete Math. Algorithms Appl., 7(2015), pp. 1550058.
  • [16] W-C. Huffman and V. Pless, Fundamentals of Error Correcting Codes, The United states of America by Combridge. University Press, New york, 2003.
  • [17] Zheng, X., Bo, K.: Cyclic codes and πœ†_{1} + πœ†_{2}𝑒 + πœ†_{3}𝑣 + πœ†_{4}𝑒𝑣 βˆ’constacyclic codes over 𝐹𝑝 +𝑒𝐹𝑝 + 𝑣𝐹𝑝 + 𝑒𝑣𝐹𝑝. Appl. Math. Comput. 306(2017), pp. 86-91 .
There are 17 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Articles
Authors

Zineb Hebbache

Publication Date January 16, 2023
Acceptance Date November 11, 2022
Published in Issue Year 2022

Cite

APA Hebbache, Z. (2023). Constacyclic Codes Over 𝑭𝒒[𝒖] /βŒ©π’–πŸ‘ = 𝟎βŒͺ and Their Application of Constructing Quantum Codes. International Journal of Informatics and Applied Mathematics, 5(2), 12-22. https://doi.org/10.53508/ijiam.1127019
AMA Hebbache Z. Constacyclic Codes Over 𝑭𝒒[𝒖] /βŒ©π’–πŸ‘ = 𝟎βŒͺ and Their Application of Constructing Quantum Codes. IJIAM. January 2023;5(2):12-22. doi:10.53508/ijiam.1127019
Chicago Hebbache, Zineb. β€œConstacyclic Codes Over 𝑭𝒒[𝒖] /βŒ©π’–πŸ‘ = 𝟎βŒͺ and Their Application of Constructing Quantum Codes”. International Journal of Informatics and Applied Mathematics 5, no. 2 (January 2023): 12-22. https://doi.org/10.53508/ijiam.1127019.
EndNote Hebbache Z (January 1, 2023) Constacyclic Codes Over 𝑭𝒒[𝒖] /βŒ©π’–πŸ‘ = 𝟎βŒͺ and Their Application of Constructing Quantum Codes. International Journal of Informatics and Applied Mathematics 5 2 12–22.
IEEE Z. Hebbache, β€œConstacyclic Codes Over 𝑭𝒒[𝒖] /βŒ©π’–πŸ‘ = 𝟎βŒͺ and Their Application of Constructing Quantum Codes”, IJIAM, vol. 5, no. 2, pp. 12–22, 2023, doi: 10.53508/ijiam.1127019.
ISNAD Hebbache, Zineb. β€œConstacyclic Codes Over 𝑭𝒒[𝒖] /βŒ©π’–πŸ‘ = 𝟎βŒͺ and Their Application of Constructing Quantum Codes”. International Journal of Informatics and Applied Mathematics 5/2 (January 2023), 12-22. https://doi.org/10.53508/ijiam.1127019.
JAMA Hebbache Z. Constacyclic Codes Over 𝑭𝒒[𝒖] /βŒ©π’–πŸ‘ = 𝟎βŒͺ and Their Application of Constructing Quantum Codes. IJIAM. 2023;5:12–22.
MLA Hebbache, Zineb. β€œConstacyclic Codes Over 𝑭𝒒[𝒖] /βŒ©π’–πŸ‘ = 𝟎βŒͺ and Their Application of Constructing Quantum Codes”. International Journal of Informatics and Applied Mathematics, vol. 5, no. 2, 2023, pp. 12-22, doi:10.53508/ijiam.1127019.
Vancouver Hebbache Z. Constacyclic Codes Over 𝑭𝒒[𝒖] /βŒ©π’–πŸ‘ = 𝟎βŒͺ and Their Application of Constructing Quantum Codes. IJIAM. 2023;5(2):12-2.

International Journal of Informatics and Applied Mathematics