Research Article
BibTex RIS Cite

The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures

Year 2021, Volume: 5 Issue: 1, 6 - 10, 28.06.2021
https://doi.org/10.46460/ijiea.898795

Abstract

Effect of different nucleation layer temperatures (LT-GaN growth temperature) on the properties of the subsequent GaN epilayer grown by MOVPE is investigated. In-situ reflectance curves demonstrate that higher LT-GaN growth temperatures cause fast coalescence (shorter transition time) of GaN nucleation islands. Both photoluminescence (PL) and high-resolution x-ray diffraction (HRXRD) are used to demonstrate the influence of LT-GaN growth temperature on optical and structural properties of subsequent GaN epilayer, respectively. It is observed that the change of LT-GaN growth temperature has an effect on both full-width at half-maximum (FWHM) values obtained from the results of HRXRD measurement and yellow luminescence peak intensity. It is seen that the yellow luminescence peak intensities for samples alter with LT-GaN growth temperature.

Supporting Institution

TUBİTAK

Project Number

113G103 and 115E109

Thanks

The author acknowledges the usage of the Nanophotonics Research and Application Center at Cumhuriyet University (CUNAM) facilities. This study is supported by the TUBITAK under project nos. 113G103 and 115E109. The author thanks Ms. A. Alev Kizilbulut from ERMAKSAN Optoelectronics for PL measurements.

References

  • [1] Jain, S., Willander, M., Narayan, J., Overstraeten, R. V., “III–nitrides: Growth, characterization, and properties”, Journal of Applied Physics, 87(3):965-1006, (2000).
  • [2] Demir, I., “Growth temperature dependency of high Al content AlGaN epilayers on AlN/Al2O3 templates”, Cumhuriyet Science Journal, 39(3):728-733, (2018).
  • [3] Demir, I., Li, H., Robin, Y., McClintock, R., Elagoz, S., Razeghi, M., “Sandwich method to grow high quality AlN by MOCVD”, Journal of Physics D: Applied Physics, 51(8):085104 (2018).
  • [4] Demir, I., Robin, Y., McClintock, R., Elagoz, S., Zekentes, K., Razeghi, M., “Direct growth of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy”, Physica Status Solidi (a), 214(4):1600363 (2017).
  • [5] Fan, X., Xu, S., Li, P., Zhang, J., Peng, R., Zhao, Y., Du, J., Hao, Y., “Nonpolar and semipolar ultraviolet multiple quantum wells on GaN/sapphire”, Materials Science in Semiconductor Processing, 92:103-107 (2019).
  • [6] Genç, M., Sheremet, V., Altuntaş, I., Demir, I., Gür, E., Elagöz, S., Gülseren, O., Özgür, U., Avrutin, V., Morkoç, H., “PECVD grown SiN photonic crystal micro-domes for the light extraction enhancement of GaN LEDs”, Gallium Nitride Materials and Devices XV, International Society for Optics and Photonics, 112800O (2020).
  • [7] Genç, M., Sheremet, V., Elçi, M., Kasapoğlu, A., Altuntaş, I., Demir, I, Eğin, G., Islamoğlu, S., Gür, E., Muzafferoğlu, N., “Distributed contact flip chip InGaN/GaN blue LED; comparison with conventional LEDs”, Superlattices and Microstructures, 128:9-13 (2019).
  • [8] Remesh, N., Kumar, S., Guiney, I., Humphreys, C. J., Raghavan, S., Muralidharan, R., Nath, D.,N., “A Novel Technique to Investigate the Role of Traps in the Off-State Performance of AlGaN/GaN High Electron Mobility Transistor on Si Using Substrate Bias”, Physica Status Solidi (a), 217(7):1900794 (2019).
  • [9] Robin, Y., Ding, K., Demir, I., McClintock, R., Elagoz, S., Razeghi, M., “High brightness ultraviolet light-emitting diodes grown on patterned silicon substrate”, Materials Science in Semiconductor Processing, 90:87-91 (2019).
  • [10] Taya, P., Singh, V., Jana, D., Tyagi, R., Sharma, T., “Optical characterization of InAlN/AlN/InGaN/GaN/sapphire high electron mobility transistor structures”, AIP Conference Proceedings, AIP Publishing LLC, 030467 (2019).
  • [11] Toci, G., Gizzi, L. A., Koester, P., Baffigi, F., Fulgentini, L., Labate, L., Hospodkova, A., Jary, V., Nikl, M., Vannini, M., “InGaN/GaN multiple quantum well for superfast scintillation application: Photoluminescence measurements of the picosecond rise time and excitation density effect”, Journal of Luminescence, 208:119-124 (2019).
  • [12] Amano, H., Sawaki, N., Akasaki, I., Toyoda, Y., “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Applied Physics Letters, 48(5):353-355 (1986).
  • [13] Anisimov, A., Wolfson, A., Mokhov, E., “Raman Spectra of Thick Epitaxial GaN Layers Formed on SiC by the Sublimation Sandwich Method”, Semiconductors, 52(9):1225-1227 (2018).
  • [14] Klad’ko, V. P., Chornen’kii, S.V., Naumov, A. V., Komarov, A. V., Tacano, M., Sveshnikov, Y. N., Vitusevich, S., Belyaev, A. E., “Interface structural defects and photoluminescence properties of epitaxial GaN and AlGaN/GaN layers grown on sapphire”, Semiconductors, 40(9):1060-1065 (2006).
  • [15] Timoshnev, S., Mizerov, A., Sobolev, M., Nikitina, E., “Growth of GaN Layers on Si (111) Substrates by Plasma-Assisted Molecular Beam Epitaxy”, Semiconductors, 52(5):660-663 (2018).
  • [16] Mohammad, S. N., Salvador, A. A., Morkoc, H., “Emerging gallium nitride based devices”, Proceedings of the IEEE, 83(10):1306-1355 (1995).
  • [17] Altuntas, I. Demir, I., Kasapoğlu, A. E., Mobtakeri, S., Gür, E., Elagoz, S., “The effects of two-stage HT-GaN growth with different V/III ratios during 3D–2D transition”, Journal of Physics D: Applied Physics, 51(3):035105 (2017).
  • [18] Demir, I., Altuntas, I., Kasapoğlu, A., Mobtakeri, S., Guer, E., Elagoz, S., “Microstructural evolution of MOVPE grown GaN by the carrier gas”, Semiconductors, 52(16):2030-2038 (2018).
  • [19] Ito, T., Sumiya, M., Takano, Y., Ohtsuka, K., Fuke, S., “Influence of thermal annealing on GaN buffer layers and the property of subsequent GaN layers grown by metalorganic chemical vapor deposition”, Japanese Journal of Applied Physics, 38(2R):649 (1999).
  • [20] Kim, K. S., Oh, C. S., Lee, K. J., Yang, G. M., Hong, C. H., Lim, K. Y., Lee, H. J., Yoshikawa, A., “Effects of growth rate of a GaN buffer layer on the properties of GaN on a sapphire substrate”, Journal of Applied Physics, 85(12):8441-8444 (1999).
  • [21] Miyake, H., Motogaito, A., Hiramatsu, K., “Effects of reactor pressure on epitaxial lateral overgrowth of GaN via low-pressure metalorganic vapor phase epitaxy”, Japanese Journal of Applied Physics, 38(9A):L1000 (1999).
  • [22] Yi, M., Lee, H., Kim, D., Park, S., Noh, D., Kim, C., Je, J., “Effects of growth temperature on GaN nucleation layers”, Applied Physics Letters, 75(15):2187-2189 (1999).
  • [23] Koleske, D. D., Henry, R. L., Twigg, M. E., Culbertson, J. C., Binari, S. C., Wickenden, A. E., Fatemi, M., “Influence of AlN nucleation layer temperature on GaN electronic properties grown on SiC”, Applied Physics Letters, 80(23):4372-4374 (2002).
  • [24] Nakamura, S., “In situ monitoring of GaN growth using interference effects”, Japanese Journal of Applied Physics, 30(8R):1620 (1991).
  • [25] Kim, S. , Oh, J., Kang, J., Kim, D., Won, J., Kim, J. W., Cho, H. K., “Two-step growth of high quality GaN using V/III ratio variation in the initial growth stage”, Journal of Crystal Growth, 262(1-4):7-13 (2004).
  • [26] Shang, L., Lu, T., Zhai, G., Jia, Z., Zhang, H., Ma, S., Li, T., Liang, J., Liu, X., Xu, B., “The evolution of a GaN/sapphire interface with different nucleation layer thickness during two-step growth and its influence on the bulk GaN crystal quality", RSC Advances, 5(63):51201-51207 (2015).
  • [27] Moram, M., Vickers, M., “X-ray diffraction of III-nitrides”, Reports on Progress in Physics, 72(3):036502 (2009).
  • [28] Heinke, H., Kirchner, V., Einfeldt, S., Hommel, D., “X-ray diffraction analysis of the defect structure in epitaxial GaN”, Applied Physics Letters, 77(14):2145-2147 (2000).
  • [29] Sugiura, L., Itaya, K., Nishio, J., Fujimoto, H., Kokubun, Y., “Effects of thermal treatment of low-temperature GaN buffer layers on the quality of subsequent GaN layers”, Journal of Applied Physics, 82(10):4877-4882 (1997).
  • [30] Ning, X., Chien, F., Pirouz, P., Yang, J., Khan, M. A., “Growth defects in GaN films on sapphire: The probable origin of threading dislocations”, Journal of Materials Research, 11(3):580-592 (1996).
  • [31] Pittet, P., Lu, G. N., Galvan, J. M., Bluet, J. M., Anas, I., Giraud, J. Y., Balosso, J., “PL characterization of GaN scintillator for radioluminescence-based dosimetry”, Optical Materials, 31(10):1421-1424 (2009).
  • [32] Zhang, H., Reber, A. C., Geng, L., Rabayda, D., Wu, H., Luo, Z., Yao, J., Khanna, S. N., “Formation of Al+ (C6H6) 13: The Origin of Magic Number in Metal–Benzene Clusters Determined by the Nature of the Core”, CCS Chemistry, 1(5):571-581 (2019).
  • [33] Robins, L. H., Bertness, K. A., Barker, J. M., Sanford, N. A., Schlager, J. B., “Optical and structural study of GaN nanowires grown by catalyst-free molecular beam epitaxy. II. Sub-band-gap luminescence and electron irradiation effects”, Journal of Applied Physics, 101(11):113506 (2007).

MOVPE ile büyütülen GaN Epitabaka: Farklı Çekirdeklenme Tabakası Sıcaklığının Etkisi

Year 2021, Volume: 5 Issue: 1, 6 - 10, 28.06.2021
https://doi.org/10.46460/ijiea.898795

Abstract

Farklı çekirdek tabakası sıcaklıklarının (LT-GaN büyüme sıcaklığı), MOVPE tarafından büyütülen sonraki GaN epitabakasının özellikleri üzerindeki etkisi araştırılmıştır. Yerinde yansıma eğrileri, daha yüksek LT-GaN büyüme sıcaklıklarının GaN çekirdeklenme adalarının hızlı birleşmesine (daha kısa geçiş süresi) neden olduğunu göstermektedir. Sırasıyla, hem fotolüminesans (PL) hem de yüksek çözünürlüklü x-ışını kırınımı (HRXRD), LT-GaN büyüme sıcaklığının sonraki GaN epilayerinin optik ve yapısal özellikleri üzerindeki etkisini göstermek için kullanıldı. LT-GaN büyüme sıcaklığındaki değişimin hem HRXRD ölçümü sonuçlarından elde edilen yarı maksimumda tam genişlik (FWHM) değerleri hem de sarı lüminesans tepe yoğunluğu üzerinde etkisi olduğu görülmüştür. Örnekler için sarı lüminesans tepe yoğunluklarının LT-GaN büyüme sıcaklığı ile değiştiği görülmüştür.

Project Number

113G103 and 115E109

References

  • [1] Jain, S., Willander, M., Narayan, J., Overstraeten, R. V., “III–nitrides: Growth, characterization, and properties”, Journal of Applied Physics, 87(3):965-1006, (2000).
  • [2] Demir, I., “Growth temperature dependency of high Al content AlGaN epilayers on AlN/Al2O3 templates”, Cumhuriyet Science Journal, 39(3):728-733, (2018).
  • [3] Demir, I., Li, H., Robin, Y., McClintock, R., Elagoz, S., Razeghi, M., “Sandwich method to grow high quality AlN by MOCVD”, Journal of Physics D: Applied Physics, 51(8):085104 (2018).
  • [4] Demir, I., Robin, Y., McClintock, R., Elagoz, S., Zekentes, K., Razeghi, M., “Direct growth of thick AlN layers on nanopatterned Si substrates by cantilever epitaxy”, Physica Status Solidi (a), 214(4):1600363 (2017).
  • [5] Fan, X., Xu, S., Li, P., Zhang, J., Peng, R., Zhao, Y., Du, J., Hao, Y., “Nonpolar and semipolar ultraviolet multiple quantum wells on GaN/sapphire”, Materials Science in Semiconductor Processing, 92:103-107 (2019).
  • [6] Genç, M., Sheremet, V., Altuntaş, I., Demir, I., Gür, E., Elagöz, S., Gülseren, O., Özgür, U., Avrutin, V., Morkoç, H., “PECVD grown SiN photonic crystal micro-domes for the light extraction enhancement of GaN LEDs”, Gallium Nitride Materials and Devices XV, International Society for Optics and Photonics, 112800O (2020).
  • [7] Genç, M., Sheremet, V., Elçi, M., Kasapoğlu, A., Altuntaş, I., Demir, I, Eğin, G., Islamoğlu, S., Gür, E., Muzafferoğlu, N., “Distributed contact flip chip InGaN/GaN blue LED; comparison with conventional LEDs”, Superlattices and Microstructures, 128:9-13 (2019).
  • [8] Remesh, N., Kumar, S., Guiney, I., Humphreys, C. J., Raghavan, S., Muralidharan, R., Nath, D.,N., “A Novel Technique to Investigate the Role of Traps in the Off-State Performance of AlGaN/GaN High Electron Mobility Transistor on Si Using Substrate Bias”, Physica Status Solidi (a), 217(7):1900794 (2019).
  • [9] Robin, Y., Ding, K., Demir, I., McClintock, R., Elagoz, S., Razeghi, M., “High brightness ultraviolet light-emitting diodes grown on patterned silicon substrate”, Materials Science in Semiconductor Processing, 90:87-91 (2019).
  • [10] Taya, P., Singh, V., Jana, D., Tyagi, R., Sharma, T., “Optical characterization of InAlN/AlN/InGaN/GaN/sapphire high electron mobility transistor structures”, AIP Conference Proceedings, AIP Publishing LLC, 030467 (2019).
  • [11] Toci, G., Gizzi, L. A., Koester, P., Baffigi, F., Fulgentini, L., Labate, L., Hospodkova, A., Jary, V., Nikl, M., Vannini, M., “InGaN/GaN multiple quantum well for superfast scintillation application: Photoluminescence measurements of the picosecond rise time and excitation density effect”, Journal of Luminescence, 208:119-124 (2019).
  • [12] Amano, H., Sawaki, N., Akasaki, I., Toyoda, Y., “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer”, Applied Physics Letters, 48(5):353-355 (1986).
  • [13] Anisimov, A., Wolfson, A., Mokhov, E., “Raman Spectra of Thick Epitaxial GaN Layers Formed on SiC by the Sublimation Sandwich Method”, Semiconductors, 52(9):1225-1227 (2018).
  • [14] Klad’ko, V. P., Chornen’kii, S.V., Naumov, A. V., Komarov, A. V., Tacano, M., Sveshnikov, Y. N., Vitusevich, S., Belyaev, A. E., “Interface structural defects and photoluminescence properties of epitaxial GaN and AlGaN/GaN layers grown on sapphire”, Semiconductors, 40(9):1060-1065 (2006).
  • [15] Timoshnev, S., Mizerov, A., Sobolev, M., Nikitina, E., “Growth of GaN Layers on Si (111) Substrates by Plasma-Assisted Molecular Beam Epitaxy”, Semiconductors, 52(5):660-663 (2018).
  • [16] Mohammad, S. N., Salvador, A. A., Morkoc, H., “Emerging gallium nitride based devices”, Proceedings of the IEEE, 83(10):1306-1355 (1995).
  • [17] Altuntas, I. Demir, I., Kasapoğlu, A. E., Mobtakeri, S., Gür, E., Elagoz, S., “The effects of two-stage HT-GaN growth with different V/III ratios during 3D–2D transition”, Journal of Physics D: Applied Physics, 51(3):035105 (2017).
  • [18] Demir, I., Altuntas, I., Kasapoğlu, A., Mobtakeri, S., Guer, E., Elagoz, S., “Microstructural evolution of MOVPE grown GaN by the carrier gas”, Semiconductors, 52(16):2030-2038 (2018).
  • [19] Ito, T., Sumiya, M., Takano, Y., Ohtsuka, K., Fuke, S., “Influence of thermal annealing on GaN buffer layers and the property of subsequent GaN layers grown by metalorganic chemical vapor deposition”, Japanese Journal of Applied Physics, 38(2R):649 (1999).
  • [20] Kim, K. S., Oh, C. S., Lee, K. J., Yang, G. M., Hong, C. H., Lim, K. Y., Lee, H. J., Yoshikawa, A., “Effects of growth rate of a GaN buffer layer on the properties of GaN on a sapphire substrate”, Journal of Applied Physics, 85(12):8441-8444 (1999).
  • [21] Miyake, H., Motogaito, A., Hiramatsu, K., “Effects of reactor pressure on epitaxial lateral overgrowth of GaN via low-pressure metalorganic vapor phase epitaxy”, Japanese Journal of Applied Physics, 38(9A):L1000 (1999).
  • [22] Yi, M., Lee, H., Kim, D., Park, S., Noh, D., Kim, C., Je, J., “Effects of growth temperature on GaN nucleation layers”, Applied Physics Letters, 75(15):2187-2189 (1999).
  • [23] Koleske, D. D., Henry, R. L., Twigg, M. E., Culbertson, J. C., Binari, S. C., Wickenden, A. E., Fatemi, M., “Influence of AlN nucleation layer temperature on GaN electronic properties grown on SiC”, Applied Physics Letters, 80(23):4372-4374 (2002).
  • [24] Nakamura, S., “In situ monitoring of GaN growth using interference effects”, Japanese Journal of Applied Physics, 30(8R):1620 (1991).
  • [25] Kim, S. , Oh, J., Kang, J., Kim, D., Won, J., Kim, J. W., Cho, H. K., “Two-step growth of high quality GaN using V/III ratio variation in the initial growth stage”, Journal of Crystal Growth, 262(1-4):7-13 (2004).
  • [26] Shang, L., Lu, T., Zhai, G., Jia, Z., Zhang, H., Ma, S., Li, T., Liang, J., Liu, X., Xu, B., “The evolution of a GaN/sapphire interface with different nucleation layer thickness during two-step growth and its influence on the bulk GaN crystal quality", RSC Advances, 5(63):51201-51207 (2015).
  • [27] Moram, M., Vickers, M., “X-ray diffraction of III-nitrides”, Reports on Progress in Physics, 72(3):036502 (2009).
  • [28] Heinke, H., Kirchner, V., Einfeldt, S., Hommel, D., “X-ray diffraction analysis of the defect structure in epitaxial GaN”, Applied Physics Letters, 77(14):2145-2147 (2000).
  • [29] Sugiura, L., Itaya, K., Nishio, J., Fujimoto, H., Kokubun, Y., “Effects of thermal treatment of low-temperature GaN buffer layers on the quality of subsequent GaN layers”, Journal of Applied Physics, 82(10):4877-4882 (1997).
  • [30] Ning, X., Chien, F., Pirouz, P., Yang, J., Khan, M. A., “Growth defects in GaN films on sapphire: The probable origin of threading dislocations”, Journal of Materials Research, 11(3):580-592 (1996).
  • [31] Pittet, P., Lu, G. N., Galvan, J. M., Bluet, J. M., Anas, I., Giraud, J. Y., Balosso, J., “PL characterization of GaN scintillator for radioluminescence-based dosimetry”, Optical Materials, 31(10):1421-1424 (2009).
  • [32] Zhang, H., Reber, A. C., Geng, L., Rabayda, D., Wu, H., Luo, Z., Yao, J., Khanna, S. N., “Formation of Al+ (C6H6) 13: The Origin of Magic Number in Metal–Benzene Clusters Determined by the Nature of the Core”, CCS Chemistry, 1(5):571-581 (2019).
  • [33] Robins, L. H., Bertness, K. A., Barker, J. M., Sanford, N. A., Schlager, J. B., “Optical and structural study of GaN nanowires grown by catalyst-free molecular beam epitaxy. II. Sub-band-gap luminescence and electron irradiation effects”, Journal of Applied Physics, 101(11):113506 (2007).
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İsmail Altuntas 0000-0002-3979-7868

Sezai Elagöz 0000-0002-3600-8640

Project Number 113G103 and 115E109
Publication Date June 28, 2021
Submission Date March 17, 2021
Published in Issue Year 2021 Volume: 5 Issue: 1

Cite

APA Altuntas, İ., & Elagöz, S. (2021). The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures. International Journal of Innovative Engineering Applications, 5(1), 6-10. https://doi.org/10.46460/ijiea.898795
AMA Altuntas İ, Elagöz S. The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures. IJIEA. June 2021;5(1):6-10. doi:10.46460/ijiea.898795
Chicago Altuntas, İsmail, and Sezai Elagöz. “The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures”. International Journal of Innovative Engineering Applications 5, no. 1 (June 2021): 6-10. https://doi.org/10.46460/ijiea.898795.
EndNote Altuntas İ, Elagöz S (June 1, 2021) The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures. International Journal of Innovative Engineering Applications 5 1 6–10.
IEEE İ. Altuntas and S. Elagöz, “The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures”, IJIEA, vol. 5, no. 1, pp. 6–10, 2021, doi: 10.46460/ijiea.898795.
ISNAD Altuntas, İsmail - Elagöz, Sezai. “The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures”. International Journal of Innovative Engineering Applications 5/1 (June 2021), 6-10. https://doi.org/10.46460/ijiea.898795.
JAMA Altuntas İ, Elagöz S. The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures. IJIEA. 2021;5:6–10.
MLA Altuntas, İsmail and Sezai Elagöz. “The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures”. International Journal of Innovative Engineering Applications, vol. 5, no. 1, 2021, pp. 6-10, doi:10.46460/ijiea.898795.
Vancouver Altuntas İ, Elagöz S. The GaN Epilayer Grown by MOVPE: Effect of The Different Nucleation Layer Temperatures. IJIEA. 2021;5(1):6-10.

This work is licensed under CC BY-NC 4.0