Research Article
BibTex RIS Cite

INVESTIGATION OF TOOL WEAR AND THRUST FORCE IN DRILLING AISI 316 AUSTENITIC STAINLESS STEEL USING ELECTROPHORESIS METHOD

Year 2024, Volume: 8 Issue: 2, 82 - 88, 31.12.2024
https://doi.org/10.46460/ijiea.1489544

Abstract

Cutting tool costs are an important component of machining. For this reason, improving machining methods in machining affects the life of the cutting tool. Recently, various machining methods have been used to extend tool life by reducing cutting tool wear. One of these methods is electrophoresis-assisted processing. Electrophoresis-assisted machining is a non-traditional machining method created by the impact of abrasive nanoparticles on the machining area with the help of the generated electric field. Electrophoresis-assisted machining increases the machinability of difficult-to-machine materials with high strength and hardness properties compared to traditional machining methods. In this study, the impacts of various cutting parameters on the drilling performance of AISI 316 L stainless steel material were searched using electrophoresis-assisted drilling (EAD) and conventional drilling (CD) methods. In the study, SiC powder was used as nanoparticles in the solution obtained to create the electric field. Within the scope of the experiments, the effects of different machining methods, cutting speeds and feed rates on thrust forces and cutting tool wear values were experimentally examined. As a result of the investigations, the cutting tool wear and thrust cutting force obtained with EAD are better than CM. Increasing feed rate and cutting speed increased cutting tool wear in both machining methods. It has been determined that the thrust force decreases as the cutting speed increases, while it increases as the feed rate increases.Keywords: Electrophoresis, drilling, cutting force, tool wear, AISI 316

References

  • [1] Ankalagi, S., Gaitonde, V. N., & Petkar, P. (2017). Experimental Studies on Hole Quality in Drilling of SA182 Steel. Materials Today: Proceedings, 4(10), 11201-11209.
  • [2] Naves, V. T. G., Da Silva, M. B., & Da Silva, F. J. (2013). Evaluation of the Effect of Application of Cutting Fluid at High Pressure on Tool Wear During Turning Operation of AISI 316 Austenitic Stainless Steel. Wear, 302(1), 1201-1208.
  • [3] Pilkington, A., Dowey, S. J., Toton, J. T., & Doyle, E. D. (2013). Machining With AlCr-Oxinitride PVD Coated Cutting Tools. Tribology International, 65, 303-313.
  • [4] Kumar, C. S., Urbikain, G., Fernandes, F., AL Rjoub, A., & De Lacalle, L. N. L. (2024). Influence of V Concentration in TiAlSiVN Coating on Self-Lubrication, Friction and Tool Wear During Two-Pass Dry Turning of Austenitic Steel 316 L. Tribology International, 193, 109355.
  • [5] Pang, X., Zhang, B., Li, S., Zeng, Y., Liu, X., Shen, P., ... & Deng, W. (2022). Machining performance evaluation and tool wear analysis of dry cutting austenitic stainless steel with variable-length restricted contact tools. Wear, 504, 204423.
  • [6] Ağar, S., & Tosun, N. (2021). Ultrasonic assisted turning of AISI 52100 steel using nanoparticle-MQL method. Surface Topography: Metrology and Properties, 9(1), 015024.
  • [7] Sujan Kumar, M., & Deivanathan, R. (2021). Effect of Process Parameters on Drilling—An Overview. Materials Today: Proceedings, 46, 1401-1406.
  • [8] Samy, G. S., & Kumaran, S. T. (2017). Measurement and Analysis of Temperature, Thrust Force and Surface Roughness in Drilling of AA (6351)-B4C Composite. Measurement, 103, 1-9.
  • [9] Munaro, R., Attanasio, A., Abeni, A., Cappellini, C., Tavormina, P., & Venturelli, F. (2024). A New Architecture Paradigm for Tool Wear Prediction During AISI 9840 Drilling Operation. Procedia Computer Science, 232, 1617-1625.
  • [10] Vasumathy, D., & Meena, A. (2017). Influence of Micro Scale Textured Tools on Tribological Properties at Tool-Chip Interface in Turning AISI 316 Austenitic Stainless Steel. Wear, 376-377, 1747-1758.
  • [11] Kümmel, J., Braun, D., Gibmeier, J., Schneider, J., Greiner, C., Schulze, V., & Wanner, A. (2015). Study on micro texturing of uncoated cemented carbide cutting tools for wear improvement and built-up edge stabilisation. Journal of Materials Processing Technology, 215, 62-70.
  • [12] Jawahir, I. S., Brinksmeier, E., M'saoubi, R., Aspinwall, D. K., Outeiro, J. C., Meyer, D., ... & Jayal, A. D. (2011). Surface integrity in material removal processes: Recent advances. CIRP annals, 60(2), 603-626.
  • [13] Kümmel, J., Gibmeier, J., Müller, E., Schneider, R., Schulze, V., & Wanner, A. (2014). Detailed Analysis of Microstructure of Intentionally Formed Built-Up Edges for Improving Wear Behaviour in Dry Metal Cutting Process of Steel. Wear, 311(1), 21-30
  • [14] Axinte, D. A., Andrews, P., Li, W., Gindy, N., Withers, P. J., & Childs, T. H. C. (2006). Turning of Advanced Ni-Based Alloys Obtained Via Powder Metallurgy Route. CIRP Annals, 55(1), 117-120.
  • [15] Yıldırım, Ç. V., Kıvak, T., Sarıkaya, M., & Erzincanlı, F. (2017). Determination of MQL Parameters Contributing to Sustainable Machining in the Milling of Nickel-Base Superalloy Waspaloy. Arab Journal of Science and Engineering, 42(11), 4667-4681.
  • [16] Ali, M. A. M., Azmi, A. I., Murad, M. N., Zain, M. Z. M., Khalil, A. N. M., & Shuaib, N. A. (2020). Roles of New Bio-Based Nanolubricants Towards Eco-Friendly and Improved Machinability of Inconel 718 Alloys. Tribology International, 144, 106106.
  • [17] Khan, M. M. A., Mithu, M. A. H., & Dhar, N. R. (2009). Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. Journal of materials processing Technology, 209(15-16), 5573-5583.
  • [18] Shokoohi, Y., Khosrojerdi, E., & Rassolian Shiadhi, B. H. (2015). Machining and Ecological Effects of a New Developed Cutting Fluid in Combination With Different Cooling Techniques on Turning Operation. Journal of Cleaner Production, 94, 330-339.
  • [19] Jindal, H., Kumar, S., & Kumar, R. (2020). Environmental Pollution and Its Impact on Public Health: A Critical Review. TARCE, 9(1), 11-18
  • [20] Lian, H. S., Guo, Z. N., Liu, J. W., Huang, Z. G., & He, J. F. (2016). Experimental Study of Electrophoretically Assisted Micro-Ultrasonic Machining. International Journal of Advanced Manufacturing Technology, 85(9), 2115-2124.
  • [21] He, J., Guo, Z., Lian, H., Wang, J., Chen, X., & Liu, J. (2020). Improving the Machining Quality of Micro Structures by Using Electrophoresis-Assisted Ultrasonic Micromilling Machining. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1), 151-161.
  • [22] Besra, L., & Liu, M. (2007). A Review on Fundamentals and Applications of Electrophoretic Deposition (EPD). Progress in Materials Science, 52(1), 1-61.
  • [23] Colantonio, L., Equeter, L., Dehombreux, P., & Ducobu, F. (2021). A Systematic Literature Review of Cutting Tool Wear Monitoring in Turning by Using Artificial Intelligence Techniques. Machines, 9(12), Article 12.
  • [24] Huang, W., Cao, S., Li, H. N., Zhou, Q., Wu, C., Zhu, D., & Zhuang, K. (2021). Tool wear in ultrasonic vibration–assisted drilling of CFRP: a comparison with conventional drilling. The International Journal of Advanced Manufacturing Technology, 115(5), 1809-1820.
  • [25] Dadgari, A., Huo, D., & Swailes, D. (2018). Investigation on tool wear and tool life prediction in micro-milling of Ti-6Al-4V. Nanotechnology and Precision Engineering (NPE), 1(4), 218-225.
  • [26] Hou, Y., Zhang, D., Wu, B., & Luo, M. (2014). Milling force modeling of worn tool and tool flank wear recognition in end milling. IEEE/ASME Transactions on Mechatronics, 20(3), 1024-1035.
  • [27] An, Q., Chen, J., Tao, Z., Ming, W., & Chen, M. (2020). Experimental investigation on tool wear characteristics of PVD and CVD coatings during face milling of Ti6242S and Ti-555 titanium alloys. International Journal of Refractory Metals and Hard Materials, 86, 105091.
  • [28] Subhedar, D. G., Chauhan, K. V., & Patel, D. A. (2022). An Experimental Investigation of TiN Coating on Cutting Force and Surface Finish in Milling of Aluminium. Materials Today: Proceedings, 59, 161-165.
  • [29] Ercetin, A., Aslantaş, K., Özgün, Ö., Perçin, M., & Chandrashekarappa, M. P. G. (2023). Optimization of Machining Parameters to Minimize Cutting Forces and Surface Roughness in Micro-Milling of Mg13Sn Alloy. Micromachines, 14(8), Article 8.

AISI 316 ÖSTENİTİK PASLANMAZ ÇELİĞİN ELEKTROFOREZ YÖNTEMİYLE DELİNMESİNDE TAKIM AŞINMASI VE İTME KUVVETİNİN İNCELENMESİ

Year 2024, Volume: 8 Issue: 2, 82 - 88, 31.12.2024
https://doi.org/10.46460/ijiea.1489544

Abstract

Kesici takım maliyetleri talaşlı imalat için önemli bir bileşendir. Bu nedenle talaşlı imalatta işleme yöntemlerinin iyileştirilmesi kesici takım ömrüne etki etmektedir. Kesici takım aşınmasını azaltarak takım ömrünün uzatılması için son zamanlarda farklı işleme yöntemleri kullanılmaktadır. Bu yöntemlerden biri de elektroforez destekli işlemedir. Elektroforez destekli işleme oluşturulan elektrik alan yardımıyla aşındırıcı nano partiküllerin işleme alanına etki etmesiyle oluşturulan geleneksel olmayan işleme yöntemidir. Elektroforez destekli işleme, geleneksel işleme yöntemlerine kıyasla yüksek mukavemet ve sertlik özelliklerine sahip, işlenmesi zor malzemelerin işlenebilirliğini artırır. Bu çalışmada AISI 304 paslanmaz çelik malzemesinin elektroforez destekli delme (EDD) ve geleneksel delme (GD) yöntemleri kullanılarak farklı kesme parametrelerinin delik delme performansı üzerine etkileri araştırılmıştır. Çalışmada elektrik alanını oluşturmak elde edilen çözeltide nano partikül olarak SiC toz kullanılmıştır. Deneyler kapsamında farklı işleme yöntemleri, kesme hızları ve ilerleme hızlarının itme kuvvetleri ve kesici takım aşınma değerleri üzerindeki etkileri deneysel olarak incelenmiştir. İncelemeler sonucunda kesici takım aşınması ve itme kuvveti için en iyi sonuçlar EDD ile elde edilmiştir. Kesme hızının ve ilerleme hızının artması her iki işleme yönteminde kesici takım aşınmasını artırmıştır. İtme kuvveti kesme hızı arttıkça azalırken ilerleme hızı arttıkça arttığı tespit edilmiştir.

References

  • [1] Ankalagi, S., Gaitonde, V. N., & Petkar, P. (2017). Experimental Studies on Hole Quality in Drilling of SA182 Steel. Materials Today: Proceedings, 4(10), 11201-11209.
  • [2] Naves, V. T. G., Da Silva, M. B., & Da Silva, F. J. (2013). Evaluation of the Effect of Application of Cutting Fluid at High Pressure on Tool Wear During Turning Operation of AISI 316 Austenitic Stainless Steel. Wear, 302(1), 1201-1208.
  • [3] Pilkington, A., Dowey, S. J., Toton, J. T., & Doyle, E. D. (2013). Machining With AlCr-Oxinitride PVD Coated Cutting Tools. Tribology International, 65, 303-313.
  • [4] Kumar, C. S., Urbikain, G., Fernandes, F., AL Rjoub, A., & De Lacalle, L. N. L. (2024). Influence of V Concentration in TiAlSiVN Coating on Self-Lubrication, Friction and Tool Wear During Two-Pass Dry Turning of Austenitic Steel 316 L. Tribology International, 193, 109355.
  • [5] Pang, X., Zhang, B., Li, S., Zeng, Y., Liu, X., Shen, P., ... & Deng, W. (2022). Machining performance evaluation and tool wear analysis of dry cutting austenitic stainless steel with variable-length restricted contact tools. Wear, 504, 204423.
  • [6] Ağar, S., & Tosun, N. (2021). Ultrasonic assisted turning of AISI 52100 steel using nanoparticle-MQL method. Surface Topography: Metrology and Properties, 9(1), 015024.
  • [7] Sujan Kumar, M., & Deivanathan, R. (2021). Effect of Process Parameters on Drilling—An Overview. Materials Today: Proceedings, 46, 1401-1406.
  • [8] Samy, G. S., & Kumaran, S. T. (2017). Measurement and Analysis of Temperature, Thrust Force and Surface Roughness in Drilling of AA (6351)-B4C Composite. Measurement, 103, 1-9.
  • [9] Munaro, R., Attanasio, A., Abeni, A., Cappellini, C., Tavormina, P., & Venturelli, F. (2024). A New Architecture Paradigm for Tool Wear Prediction During AISI 9840 Drilling Operation. Procedia Computer Science, 232, 1617-1625.
  • [10] Vasumathy, D., & Meena, A. (2017). Influence of Micro Scale Textured Tools on Tribological Properties at Tool-Chip Interface in Turning AISI 316 Austenitic Stainless Steel. Wear, 376-377, 1747-1758.
  • [11] Kümmel, J., Braun, D., Gibmeier, J., Schneider, J., Greiner, C., Schulze, V., & Wanner, A. (2015). Study on micro texturing of uncoated cemented carbide cutting tools for wear improvement and built-up edge stabilisation. Journal of Materials Processing Technology, 215, 62-70.
  • [12] Jawahir, I. S., Brinksmeier, E., M'saoubi, R., Aspinwall, D. K., Outeiro, J. C., Meyer, D., ... & Jayal, A. D. (2011). Surface integrity in material removal processes: Recent advances. CIRP annals, 60(2), 603-626.
  • [13] Kümmel, J., Gibmeier, J., Müller, E., Schneider, R., Schulze, V., & Wanner, A. (2014). Detailed Analysis of Microstructure of Intentionally Formed Built-Up Edges for Improving Wear Behaviour in Dry Metal Cutting Process of Steel. Wear, 311(1), 21-30
  • [14] Axinte, D. A., Andrews, P., Li, W., Gindy, N., Withers, P. J., & Childs, T. H. C. (2006). Turning of Advanced Ni-Based Alloys Obtained Via Powder Metallurgy Route. CIRP Annals, 55(1), 117-120.
  • [15] Yıldırım, Ç. V., Kıvak, T., Sarıkaya, M., & Erzincanlı, F. (2017). Determination of MQL Parameters Contributing to Sustainable Machining in the Milling of Nickel-Base Superalloy Waspaloy. Arab Journal of Science and Engineering, 42(11), 4667-4681.
  • [16] Ali, M. A. M., Azmi, A. I., Murad, M. N., Zain, M. Z. M., Khalil, A. N. M., & Shuaib, N. A. (2020). Roles of New Bio-Based Nanolubricants Towards Eco-Friendly and Improved Machinability of Inconel 718 Alloys. Tribology International, 144, 106106.
  • [17] Khan, M. M. A., Mithu, M. A. H., & Dhar, N. R. (2009). Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. Journal of materials processing Technology, 209(15-16), 5573-5583.
  • [18] Shokoohi, Y., Khosrojerdi, E., & Rassolian Shiadhi, B. H. (2015). Machining and Ecological Effects of a New Developed Cutting Fluid in Combination With Different Cooling Techniques on Turning Operation. Journal of Cleaner Production, 94, 330-339.
  • [19] Jindal, H., Kumar, S., & Kumar, R. (2020). Environmental Pollution and Its Impact on Public Health: A Critical Review. TARCE, 9(1), 11-18
  • [20] Lian, H. S., Guo, Z. N., Liu, J. W., Huang, Z. G., & He, J. F. (2016). Experimental Study of Electrophoretically Assisted Micro-Ultrasonic Machining. International Journal of Advanced Manufacturing Technology, 85(9), 2115-2124.
  • [21] He, J., Guo, Z., Lian, H., Wang, J., Chen, X., & Liu, J. (2020). Improving the Machining Quality of Micro Structures by Using Electrophoresis-Assisted Ultrasonic Micromilling Machining. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1), 151-161.
  • [22] Besra, L., & Liu, M. (2007). A Review on Fundamentals and Applications of Electrophoretic Deposition (EPD). Progress in Materials Science, 52(1), 1-61.
  • [23] Colantonio, L., Equeter, L., Dehombreux, P., & Ducobu, F. (2021). A Systematic Literature Review of Cutting Tool Wear Monitoring in Turning by Using Artificial Intelligence Techniques. Machines, 9(12), Article 12.
  • [24] Huang, W., Cao, S., Li, H. N., Zhou, Q., Wu, C., Zhu, D., & Zhuang, K. (2021). Tool wear in ultrasonic vibration–assisted drilling of CFRP: a comparison with conventional drilling. The International Journal of Advanced Manufacturing Technology, 115(5), 1809-1820.
  • [25] Dadgari, A., Huo, D., & Swailes, D. (2018). Investigation on tool wear and tool life prediction in micro-milling of Ti-6Al-4V. Nanotechnology and Precision Engineering (NPE), 1(4), 218-225.
  • [26] Hou, Y., Zhang, D., Wu, B., & Luo, M. (2014). Milling force modeling of worn tool and tool flank wear recognition in end milling. IEEE/ASME Transactions on Mechatronics, 20(3), 1024-1035.
  • [27] An, Q., Chen, J., Tao, Z., Ming, W., & Chen, M. (2020). Experimental investigation on tool wear characteristics of PVD and CVD coatings during face milling of Ti6242S and Ti-555 titanium alloys. International Journal of Refractory Metals and Hard Materials, 86, 105091.
  • [28] Subhedar, D. G., Chauhan, K. V., & Patel, D. A. (2022). An Experimental Investigation of TiN Coating on Cutting Force and Surface Finish in Milling of Aluminium. Materials Today: Proceedings, 59, 161-165.
  • [29] Ercetin, A., Aslantaş, K., Özgün, Ö., Perçin, M., & Chandrashekarappa, M. P. G. (2023). Optimization of Machining Parameters to Minimize Cutting Forces and Surface Roughness in Micro-Milling of Mg13Sn Alloy. Micromachines, 14(8), Article 8.
There are 29 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Aybars Mahmat 0000-0001-9261-0620

Early Pub Date December 27, 2024
Publication Date December 31, 2024
Submission Date May 24, 2024
Acceptance Date November 24, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Mahmat, A. (2024). INVESTIGATION OF TOOL WEAR AND THRUST FORCE IN DRILLING AISI 316 AUSTENITIC STAINLESS STEEL USING ELECTROPHORESIS METHOD. International Journal of Innovative Engineering Applications, 8(2), 82-88. https://doi.org/10.46460/ijiea.1489544
AMA Mahmat A. INVESTIGATION OF TOOL WEAR AND THRUST FORCE IN DRILLING AISI 316 AUSTENITIC STAINLESS STEEL USING ELECTROPHORESIS METHOD. IJIEA. December 2024;8(2):82-88. doi:10.46460/ijiea.1489544
Chicago Mahmat, Aybars. “INVESTIGATION OF TOOL WEAR AND THRUST FORCE IN DRILLING AISI 316 AUSTENITIC STAINLESS STEEL USING ELECTROPHORESIS METHOD”. International Journal of Innovative Engineering Applications 8, no. 2 (December 2024): 82-88. https://doi.org/10.46460/ijiea.1489544.
EndNote Mahmat A (December 1, 2024) INVESTIGATION OF TOOL WEAR AND THRUST FORCE IN DRILLING AISI 316 AUSTENITIC STAINLESS STEEL USING ELECTROPHORESIS METHOD. International Journal of Innovative Engineering Applications 8 2 82–88.
IEEE A. Mahmat, “INVESTIGATION OF TOOL WEAR AND THRUST FORCE IN DRILLING AISI 316 AUSTENITIC STAINLESS STEEL USING ELECTROPHORESIS METHOD”, IJIEA, vol. 8, no. 2, pp. 82–88, 2024, doi: 10.46460/ijiea.1489544.
ISNAD Mahmat, Aybars. “INVESTIGATION OF TOOL WEAR AND THRUST FORCE IN DRILLING AISI 316 AUSTENITIC STAINLESS STEEL USING ELECTROPHORESIS METHOD”. International Journal of Innovative Engineering Applications 8/2 (December 2024), 82-88. https://doi.org/10.46460/ijiea.1489544.
JAMA Mahmat A. INVESTIGATION OF TOOL WEAR AND THRUST FORCE IN DRILLING AISI 316 AUSTENITIC STAINLESS STEEL USING ELECTROPHORESIS METHOD. IJIEA. 2024;8:82–88.
MLA Mahmat, Aybars. “INVESTIGATION OF TOOL WEAR AND THRUST FORCE IN DRILLING AISI 316 AUSTENITIC STAINLESS STEEL USING ELECTROPHORESIS METHOD”. International Journal of Innovative Engineering Applications, vol. 8, no. 2, 2024, pp. 82-88, doi:10.46460/ijiea.1489544.
Vancouver Mahmat A. INVESTIGATION OF TOOL WEAR AND THRUST FORCE IN DRILLING AISI 316 AUSTENITIC STAINLESS STEEL USING ELECTROPHORESIS METHOD. IJIEA. 2024;8(2):82-8.