Bazı Yerel Fasulye (Phaseolus vulgaris L.) Genotiplerinin Çimlenme Evresindeki Tuz Stresine Toleranslık Seviyelerinin Belirlenmesi
Year 2023,
, 166 - 183, 15.08.2023
Enes Gökhan Yılmaz
,
Kezban Dinç
,
İskender Tiryaki
Abstract
Bu çalışma Türkiye'nin çeşitli yerlerinden toplanan 18 yerel fasulye (Phaseolus vulgaris L.) genotipinin çimlenme dönemindeki tuz stresine tolerans düzeylerinin belirlenmesi amacıyla yürütülmüştür. Tesadüf blokları desenine göre 4 tekerrürlü olarak yürütülen çalışmada her tekerrürde 25 adet tohum olacak şekilde içinde çift kat filtre kağıdı bulunan kapaklı plastik kaplarına tek sıra halinde yerleştirilmiş ve 15 mL 200 mM NaCl eklenerek 28 ± 0.5 °C'de karanlık ortamda çimlenme denemesine alınmıştır. Her genotipin kontrol tohumları, aynı koşullar altında saf su (dH2O) eklenerek test edilmiştir. Çimlenen tohumlarda son çimlenme oranı, çimlenme hızı ve çimlenme homojenite parametreleri hesaplanmıştır. Tuz stresi Pv-6, Pv-8 ve Pv-14 kodlu genotiplere ait tohumların çimlenme oranlarında herhangi bir gerilemeye neden olmazken, Pv-2 kodlu yerel genotipe ait tohumların çimlenme oranında %36.84’lik gerilemeye neden olmuştur. Tuz stresi koşullarında çimlenme hızı G50 = 1.41 gün (Pv1) ile G50 = 3.94 gün (Pv-12) arasında değişirken, kontrol koşullarda 0.84 gün (Pv-1) ile 2.60 gün (Pv-18) arasında değişmiştir. Çimlenme homojenite süreleri Pv-1 kodlu genotipte en yavaş (G10-90 = 3.03 gün) olurken, Pv-13 kodlu genotipte en homojen çimlenme (G10-90 = 1.59) gerçekleşmiştir. Tohumların zamana bağlı çimlenme dinamiklerine ait değişimler kontrollü şartlarda erken dönemlerde var olan genetik varyasyonun çimlenme süresinin uzamasına bağlı olarak azaldığını buna karşın stres şartlarında genetik varyasyonun artan bir şekilde çimlenmenin sonraki zaman dilimlerinde ortaya çıktığını göstermiştir. Tohumların iki boyutlu yüzey alan ölçümleri ile belirlenen tohum iriliklerinin tuz stresi ile olan ilişkisinin ortaya konması amacıyla yapılan analiz sonuçları, tohum büyüklüklüleri ile tuz stresi şartlarındaki çimlenme oranları arasında doğrusal bir ilişkinin olmadığını, ancak hem kontrol hem de tuz tresi şartlarındaki çimlenme hızı (G50) ve çimlenme homojenite (G10-90) değerleri arasında sırasıyla pozitif ve negatif bir ilişkinin var olduğunu göstermiştir. Çalışma sonuçları, yerel fasulye genotiplerinin incelenen çimlenme parametreleri açısından tuz stresine karşı önemli farklılıklar gösterdiğini ve tuza tolerant olduğu belirlenen genotiplerin bu amaçla yapılacak ıslah çalışmalarında başarıyla kullanılabileceğine işaret etmektedir.
Thanks
Tohumların temini sırasında yardımlarını esirgemeyen herkese teşekkür ederiz.
References
- 1. Gama, P.B.S., et al., Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress. African Journal of Biotechnology, 2010. 6(2):p. 79–88.
- 2. Taïbi, K., et al., Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botanyt, 2016 105: p. 306-312.
- 3. Garcia, C. L., et al., Effect of salinity stress and microbial inoculations on glomalin production and plant growth parameters of snap bean (Phaseolus vulgaris). Agronomy, 2019. 9(9): p. 545
- 4. Tiryaki, I., Bazı tarla bitkilerinin tuz stresine gösterdikleri adaptasyon mekanizmaları. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 2018. 21(5): p. 800-808.
- 5. Tiryaki, I. and N. Isidogru, Determination of salt tolerance levels and genetic relationships of Vicia sativa cultivars using gene targeted functional markers. Acta Botanica Croatica, 2022. 81(1): p. 80-88.
- 6. Porcel, R., R. Aroca and J. M. Ruiz-Lozano, Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 2012. 32(1): p. 181-200.
- 7. Farooq, M., et al., Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry, 2017. 188: p. 199-217.
- 8. Khayamim, S., et al., Seed germination, plant establishment, and yield of sugar beet genotypes under salinity stress. Journal of Agricultural Science and Technology, 2014. 16(4): p. 779-790.
- 9. Bu, Y., et al., Adverse effect of urease on salt stress during seed germination in Arabidopsis thaliana. Febs Letters, 2015. 589(12): p. 1308-1313.
- 10. Hussain, N., et al., Salinity and drought management in legume crops, in Climate change and management of cool season grain legume crops, S. Yadav and R. Redden, Editors. 2010, Springer Netherlands. Dordrecht: Dordrecht. p. 171-191.
- 11. Yilmaz, E. G., I. Tiryaki and U. Sari, Genetic variation among einkorn genotypes based on gene targeted functional markers and its possible relationship with drought tolerance at seed germination stage. Molecular Biology Reports, 2022. 49(8): p. 7389–7398.
- 12. A. M. De Ron et al., Common bean, in grain legumes handbook of plant breeding, A. De Ron, Editor. 2015, Springer. New York: New York. p. 1–36.
- 13. Fi̇dan, E. and A. Eki̇nci̇alp, Investigation of responses of some bean (Phaseolus vulgaris l.) genotypes to different levels of salt stress. Yuzuncu Yıl University Journal of Agricultural Sciences, 2017. 27(4): p. 558–568.
14. Hiz, M. C., et al., Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris l.) under saline conditions. Plos one, 2014. 9(3): p. e92598.
- 15. Özkorkmaz, F. and N. Yilmaz, Farklı tuz konsantrasyonlarının fasulye (Phaseolus vulgaris L.) ve börülcede (Vigna unguiculata L.) çimlenme üzerine etkilerinin belirlenmesi. Ordu University Journal of Science Tecnology, 2017. 7(2): p. 196–200.
- 16. Tiryaki, I. and S. A. Kaplan, Enhanced germination performance of dormant seeds of Eragrostis tef in the presence of light. Tropical Grasslands-Forrajes Tropicales, 2019. 7(3): p. 244–251.
- 17. SAS, SAS/STAT Software. 2019. SAS Institute Inc., Northern California.
- 18. Tiryaki, I., et al., Priming combined with plant growth regulators promotes germination and emergence of dormant Amaranthus cruentus L. seeds,” Seed science and technology, 2005. 33(3): p. 571–579.
- 19. Govindaraj, M., M. Vetriventhan, and M. Srinivasan, Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genetics Research International, 2015. 2015(14): p. 1–14.
- 20. Ismael A., et al., Genetic variation in drought-tolerance traits and their relationships to growth in Pinus radiata D. don under water stress. Frontiers in plant science, 2022. 12: p. 3043.
- 21. Al-huraby A. I. and S. O. Bafeel, The effect of salinity stress on the Phaseolus vulgaris L. plant African Journal of Biological Sciences, 2022. 4(1): p. 94–107.
- 22. Bewley J. D., et al., Seeds: Physiology of development, germination and dormancy. 2013, Heidelberg, Germany: Springer Science Berlin.
- 23. Rajjou, L., et al., Seed germination and vigor. Annual review of plant biology, 2012. 63: p. 507-533.
24. Baskin C. C. and J. M. Baskin, Seeds: ecology, biogeography, and evolution of dormancy and germination. 1998, San Diego: Academic Press.
- 25. Souza, M. L. and M. Fagundes, Seed size as key factor in germination and seedling development of Copaifera langsdorffii (Fabaceae). American Journal of Plant Sciences, 2014. 2014(17): p. 2566–2573.
- 26. Harper, L. J., Population biology of plants. 1977, London: Academic Press.
- 27. Geritz, S. A., Evolutionarily stable seed polymorphism and small-scale spatial variation in seedling density. The American Naturalist, 1995. 146(4): p. 685–707.
- 28. Saeed, S. and S. S. Shaukat, Effect of seed size on germination, emergence, growth and seedling survival of Senna occidentalis Link. Pakistan Journal of Biological Sciences, 2000. 3(2): p. 292–295.
- 29. He, Y., et al., Seed size effect on seedling growth under different light conditions in the clonal herb Ligularia virgaurea in Qinghai-Tibet Plateau. Acta Ecologia Sinica, 2007. 27(8): p.3091–3108.
Determination of Salt Stress Tolerance Levels of Some Local Bean (Phaseolus vulgaris L.) Genotypes at Germination Stage
Year 2023,
, 166 - 183, 15.08.2023
Enes Gökhan Yılmaz
,
Kezban Dinç
,
İskender Tiryaki
Abstract
This study was carried out to determine the tolerance levels of 18 local bean genotypes collected from various locations of Turkey at the germination stage. The germination test was conducted with 25 seeds with 4 replications by using a completely randomized block design. Seeds were placed on double filter paper in a covered plastic box and were incubated at 28 ± 0.5 °C in darkness. Control seeds of each genotype were treated with dH2O and were germinated under the same conditions as described before. The germination percentage, germination rate, and homogeneity of the seeds were calculated. The highest reduction rate in the final germination percentage was determined in the Pv-2 (36.84%) local genotype, while no deleterious effect of salt stress was observed in genotypes Pv-6, Pv-8, and Pv-14. Germination speed varied between G50 = 1.41 days (Pv-1) and G50 = 3.94 days (Pv-12) in salt stress conditions, while it was changed between 0.84 days (Pv-1) and 2.60 days (Pv- 18) under control conditions. The highest germination delay was determined in Pv-1 (G10-90 = 3.03 days), while the Pv-13 variety (G10-90 = 1.59 days) had the best germination homogeneity. The germination dynamics of seeds in time showed that the genetic variation existed in the early periods of germination in terms of genotype based performances in germination percentages decreased over time under controlled conditions while such genetic variation increasingly appeared in the later periods of time under salt stress conditions. The analysis to reveal the relationship between the seed size based on the two-dimensional surface area and salt stress tolerance levels of the seeds showed that there was no any linear relationship between the seed size and germination percentage of the genotype under salt stress conditions. However, it showed that there was a positive and negative relationship between rate (G50) and span (G10-90) of germination under both control and salt stress conditions, respectively. The results of the study revealed that the local bean genotypes showed significant variation for salt stress tolerance levels based on germination parameters determined and those genotypes which were determined as salt tolerant could be successfully used in such breeding programs.
References
- 1. Gama, P.B.S., et al., Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress. African Journal of Biotechnology, 2010. 6(2):p. 79–88.
- 2. Taïbi, K., et al., Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botanyt, 2016 105: p. 306-312.
- 3. Garcia, C. L., et al., Effect of salinity stress and microbial inoculations on glomalin production and plant growth parameters of snap bean (Phaseolus vulgaris). Agronomy, 2019. 9(9): p. 545
- 4. Tiryaki, I., Bazı tarla bitkilerinin tuz stresine gösterdikleri adaptasyon mekanizmaları. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 2018. 21(5): p. 800-808.
- 5. Tiryaki, I. and N. Isidogru, Determination of salt tolerance levels and genetic relationships of Vicia sativa cultivars using gene targeted functional markers. Acta Botanica Croatica, 2022. 81(1): p. 80-88.
- 6. Porcel, R., R. Aroca and J. M. Ruiz-Lozano, Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 2012. 32(1): p. 181-200.
- 7. Farooq, M., et al., Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology and Biochemistry, 2017. 188: p. 199-217.
- 8. Khayamim, S., et al., Seed germination, plant establishment, and yield of sugar beet genotypes under salinity stress. Journal of Agricultural Science and Technology, 2014. 16(4): p. 779-790.
- 9. Bu, Y., et al., Adverse effect of urease on salt stress during seed germination in Arabidopsis thaliana. Febs Letters, 2015. 589(12): p. 1308-1313.
- 10. Hussain, N., et al., Salinity and drought management in legume crops, in Climate change and management of cool season grain legume crops, S. Yadav and R. Redden, Editors. 2010, Springer Netherlands. Dordrecht: Dordrecht. p. 171-191.
- 11. Yilmaz, E. G., I. Tiryaki and U. Sari, Genetic variation among einkorn genotypes based on gene targeted functional markers and its possible relationship with drought tolerance at seed germination stage. Molecular Biology Reports, 2022. 49(8): p. 7389–7398.
- 12. A. M. De Ron et al., Common bean, in grain legumes handbook of plant breeding, A. De Ron, Editor. 2015, Springer. New York: New York. p. 1–36.
- 13. Fi̇dan, E. and A. Eki̇nci̇alp, Investigation of responses of some bean (Phaseolus vulgaris l.) genotypes to different levels of salt stress. Yuzuncu Yıl University Journal of Agricultural Sciences, 2017. 27(4): p. 558–568.
14. Hiz, M. C., et al., Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris l.) under saline conditions. Plos one, 2014. 9(3): p. e92598.
- 15. Özkorkmaz, F. and N. Yilmaz, Farklı tuz konsantrasyonlarının fasulye (Phaseolus vulgaris L.) ve börülcede (Vigna unguiculata L.) çimlenme üzerine etkilerinin belirlenmesi. Ordu University Journal of Science Tecnology, 2017. 7(2): p. 196–200.
- 16. Tiryaki, I. and S. A. Kaplan, Enhanced germination performance of dormant seeds of Eragrostis tef in the presence of light. Tropical Grasslands-Forrajes Tropicales, 2019. 7(3): p. 244–251.
- 17. SAS, SAS/STAT Software. 2019. SAS Institute Inc., Northern California.
- 18. Tiryaki, I., et al., Priming combined with plant growth regulators promotes germination and emergence of dormant Amaranthus cruentus L. seeds,” Seed science and technology, 2005. 33(3): p. 571–579.
- 19. Govindaraj, M., M. Vetriventhan, and M. Srinivasan, Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genetics Research International, 2015. 2015(14): p. 1–14.
- 20. Ismael A., et al., Genetic variation in drought-tolerance traits and their relationships to growth in Pinus radiata D. don under water stress. Frontiers in plant science, 2022. 12: p. 3043.
- 21. Al-huraby A. I. and S. O. Bafeel, The effect of salinity stress on the Phaseolus vulgaris L. plant African Journal of Biological Sciences, 2022. 4(1): p. 94–107.
- 22. Bewley J. D., et al., Seeds: Physiology of development, germination and dormancy. 2013, Heidelberg, Germany: Springer Science Berlin.
- 23. Rajjou, L., et al., Seed germination and vigor. Annual review of plant biology, 2012. 63: p. 507-533.
24. Baskin C. C. and J. M. Baskin, Seeds: ecology, biogeography, and evolution of dormancy and germination. 1998, San Diego: Academic Press.
- 25. Souza, M. L. and M. Fagundes, Seed size as key factor in germination and seedling development of Copaifera langsdorffii (Fabaceae). American Journal of Plant Sciences, 2014. 2014(17): p. 2566–2573.
- 26. Harper, L. J., Population biology of plants. 1977, London: Academic Press.
- 27. Geritz, S. A., Evolutionarily stable seed polymorphism and small-scale spatial variation in seedling density. The American Naturalist, 1995. 146(4): p. 685–707.
- 28. Saeed, S. and S. S. Shaukat, Effect of seed size on germination, emergence, growth and seedling survival of Senna occidentalis Link. Pakistan Journal of Biological Sciences, 2000. 3(2): p. 292–295.
- 29. He, Y., et al., Seed size effect on seedling growth under different light conditions in the clonal herb Ligularia virgaurea in Qinghai-Tibet Plateau. Acta Ecologia Sinica, 2007. 27(8): p.3091–3108.