Review
BibTex RIS Cite

Hava Bazlı Proteinin Alternatif Bir Protein Kaynağı Olarak Kullanım Olanaklarının İncelenmesi

Year 2022, Volume: 5 Issue: 3, 643 - 668, 15.12.2022
https://doi.org/10.38001/ijlsb.1096533

Abstract

Günümüzde gıda endüstrisinde sürdürülebilir kaynakların, yeni alternatiflerin arayışı trend araştırma konuları olmaktan çıkarak bir zorunluluk haline gelmeye başlamıştır. Üretimde kullanılan doğal kaynakların sınırlı olması ve hızlı nüfus artışı bu durumun temel nedenleridir. Bu noktada alternatif protein kaynağı araştırmaları son derece önem kazanmıştır. Yapılan araştırmalara göre mevcut tüketim alışkanlıkları ve nüfus artışıyla devam edilirse; 2050 yılına gelindiğinde dünya nüfusuna yeterli protein kaynağının sağlanması için protein mahsüllerinin 2005 yılına göre %110 daha fazlasına ihtiyaç duyulacaktır. Tarımsal alanların azalması, küresel ısınma ve insanların zararlı faliyetleri neticesinde biyoçeşitliliğin zarar gördüğü gerçekleri hesaba katıldığında gelecekte kaliteli protein ve su kaynaklarına erişim bir soru işareti halini almaktadır. Tek hücre proteini (THP); biyoprotein, mikrobiyal protein veya biyokütle olarak adlandırılan kurutulmuş hücre topluluğudur. THP; mantarlar, mayalar, algler ve bakteriler gibi birçok farklı mikroorganizma ile elde edilebilmektedir. Hidrojen oksitleyici bakteriler (HOB) birçok avantajı ile THP üretiminde ön plana çıkmaktadır. Hava bazlı protein (HBP) ise HOB’lerin biyoreaktörlerde çoğaltılıp, saflaştırılıp kurutulması ile elde edilen bir THP’dir. Elde edilen biyokütle, proteine ek olarak lipid, karbonhidrat, vitamin ve mineral kaynağı da sağlamaktadır. Tüm bu sebepler HBP’lerin alternatif, sürdürülebilir bir protein kaynağı olma potansiyeline işaret etmektedir. Yapılan bu çalışmada; THP, HOB ve HBP hakkında yapılan araştırmalar derlenmiş ve HBP’lerin kullanım potansiyellerine ışık tutmak hedeflenmiştir.

Supporting Institution

Pınar Entegre Et ve Un Sanayi A.Ş.

References

  • 1.Godfray, H., Beddington, J., Crute, I., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas S. M., Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science, 2010, 327(5967), 812-818.
  • 2. Birleşmiş Milletler. 2019. Deparment of Economic and Social Affairs, World Population Highlights.
  • 3.Tilman, D., Balzer, C., Hill, J., Befort, B. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 2011, 108 (50), 20260-20264.
  • 4. Poore, J., Nemecek, T. Reducing food's enviromental impacts through producers and consumers. Science, 2018, 360(6392), 987-992
  • 5. Gruener, O. The water footprint: water in the supply chain. The Environmentalist, 1. 2010 (93),12.
  • 6. Boland, M., Rae, A., Vereijken, J. The future supply of animal derived protein for human consumption. Trends in Food Science & Technology, 2013. 29(1), 62-73.
  • 7. Henchion, M., Hayes, M., Mullen, A., Fenelon, M., Tiwari, B. Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods, 2017, 6(7), 53.
  • 8. Bohrer, B. Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends in Food Science & Technology, 2017,65, 103-112.
  • 9. Reeds, P. Dispensable and indispensable amino acids for humans. The Journal of Nutrition, 2000.130(7), 1835-1840.
  • 10. Elango, R., Ball, R., Pencharz, P. Amino acid requirements in humans: with a special emphasis on the metabolic availability of amino acids. Amino acids, 2009, 37(1), 19-27.
  • 11.Henley, E., Taylor, J., Obukosia, S. The importance of dietary protein in human health: Combating protein deficiency in sub-Saharan Africa through trangenic biofortified sorghum. Advances in Food and Nutrition Research, 2010, 60, 21-52.
  • 12. Moughan, P. J. Dietary protein for human health. British Journal of Nutrition, 2012, 108(S2), 1-2.
  • 13. Neacsu, M., McBey, D., Johnstone, A. M. Meat reduction and plant-based food: replacement of meat, nutritional, health and social aspects. In Sustainable Protein Sources, Edited by Nadathur S. R., Scanlin L., Wanasundara, J. P. D., Elsevier, London, United Kingdom, 2017, 359-375.
  • 14. Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., Iqbal, M. M., Lobell, D. B., Travasso, M. Food Security and Food Production Systems. In Climate Change: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects, Edited by Field C. B., Barros V. R., Dokken D. J., Mach K. J., Mastrandrea M. D., Cambridge University Press, New York, 2014, 485-533.
  • 15. Semba, R. The rise and fall of protein malnutrition in global health. Annals of Nutrition and Metabolism, 2016, 69(2), 79-88.
  • 16. Wu, G., Jaeger, L., Bazer, F., Rhoads, J. Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications. The Journal of Nutritional Biochemistry, 2004, 15(8), 442-451.
  • 17. Matassa, S., Verstraete, W., Pikaar, I., Boon, N. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria. Water Research, 2016, 101, 137-146.
  • 18. Sharif, M., Zafar, M. H., Aqib, A. I., Saeed, M., Farag, M. R., Alagawany, M. Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture, 2021, 531, 735885.
  • 19. Saeed, M., Yasmin, I., Murtaza, M. A., Fatima, I., Saeed, S. Single cell protein: a novel value added food product. Pakistan Journal of Food Sciences, 2016, 26, 211-217.
  • 20.Çalışkaner, Ş., Ceylan, N., Konca, Y., Demirel, R., Çördük, M., Milli, Ü. Etil alkol vasatında üretilen tek hücre proteini (Erpin) üzerinde biyolojik bir araştırma. Türk Tarım ve Ormancılık Dergisi, 1998, 22(3), 299-304.
  • 21.Gao, Y., Li, D., Liu, Y. Production of single cell protein from soy molasses using Candida tropicalis. Annals of Microbiology, 2012, 62(3), 1165-1172.
  • 22. Goldberg, I. Single Cell Protein. 2013. Springer Science & Business Media, Berlin, Germany.
  • 23. Volova, T., Barashkov, V. Characteristics of proteins synthesized by hydrogen-oxidizing microorganisms. Applied Biochemistry and Microbiology, 2010, 46, 574-579.
  • 24. Campbell-Platt, G. Fermented Foods-a world perspective. Food Research International, 1994, 27(3), 253-257.
  • 25. Ciferri, O. Spirulina, the edible microorganism. Microbiological Reviews, 1983, 47(4), 551-578.
  • 26. Abdulqader, G., Barsanti, L., Tredici, M. Harvest of Arthrospira platensis from Lake Kossorom (Chad) and its household usage amoung the Kanembu. Journal of Applied Phycology, 2000, 12(3), 493-498.
  • 27. Nasseri, A. T., Rasoul-Amini, S., Morowvat, M. H., Ghasemi, Y. Single cell protein: production and process. American Journal of Food Technology, 2011, 6(2), 103-116.
  • 28. Srividya, Y., Joseph Kingston, J., Murali, H. S., Batra, H.V. Rapid and concurrent detection of Listeria species by Multiplex PCR. International Journal of Pharma and Bio Sciences, 2013, 4(1), 106-116.
  • 29. Matelbs, R., Tannenbaum, S. Single-cell protein. Economic Botany, 1968, 22(1), 42-50.
  • 30. Patel, S., Cook, P. The DNA-protein cross: a method for detecting specific DNA-protein complexes in crude mixtures. The EMBO journal, 1983, 2(1), 137-142.
  • 31. Steinkraus, K. Microbial biomass protein grown on edible susbtrates: the indigenous fermented foods. In Microbial Biomass Proteins, Edited by Moo-Young, M., Gregory K. F., Elsevier Applied Science, Essex, England, 1986, 33-45.
  • 32. Bekatorou, A., Psarianos, C., Koutinas, A. A. Production of food grade yeasts. Food Technology and Biotechnology, 2006, 44(3), 407-415.
  • 33. Overland, M. 2012. Potential of microbial ingredients as protein sources for farmed animals and fish. International Symposium on European Protein Position.
  • 34. Upadhyaya, S., Tiwari, K., Arora, N., Singh, D. P. Microbial protein: a valuable component for future food security. In Microbes and Enviromental Management Edited by Singh J.S., Singh D. P., Studium Press, New Delhi, 2016, 259-279
  • 35. Reihani, S. F. S., Khosravi-Darani, K. Mycoprotein production from date waste using Fusarium venenatum in a submerged culture. Applied Food Biotechnology, 2018, 5(4), 243352.
  • 36. Souza Filho, P. F., Nair, R. B., Andersson, D., Lennartsson, P. R., Taherzadeh, M. J. Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi. Fungal Biology and Biotechnology, 2018, 5(1), 1-10.
  • 37. Hashempour-Baltork, F., Hosseini, S. M., Assarehzadegan, M. A., Khosravi-Darani, K., Hosseini, H. Safety assays and nutritional values of mycoprotein product by Fusarium venenatum IR372C from date waste as subtrate. Journal of the Science of Food and Agriculture, 2020, 100(12), 4433-4441.
  • 38. Israelidis, C. Nutrition-Single cell protein, twenty years later. Proceedings from First Biointernational Conference. April 22, 2003, Athens, Greece.
  • 39. Vermeulen, S. J., Campbell, B. M., Ingram, J. S. Climate change and food systems. Annual Review of Environment and Resources, 2012, 37, 195-222.
  • 40. Pikaar, I., Matassa, S., Rabaey, K., Bodirsky, B., Popp, A., Herrero, M., Verstraete, W. Microbes and the next nitrogen revolution. Environmental Science and Technology, 2017, 51(13), 7297-7303.
  • 41. Mekonnen, M., Hoekstra, A. Water footprint benchmarks for crop production: A first global assessment. Ecological, 2014, 46, 214-223.
  • 42.Demirel, R., Demirel, D. Tek hücre proteinlerinin insan ve hayvan beslemede kullanımı. Journal of the Institute of Science and Technology, 2018, 8(3), 327-336.
  • 43. Edozien, J., Udo, U., Young, V., Scrimshaw, N. Effects of high levels of yeast feeding on uric acid metabolism of young men. Nature, 1970, 228(5267), 180-187.
  • 44. Ritala, A., Hakkinen, S. T., Toivari, M., Wiebe, M. G. Single cell protein state of the art, industrial landscape and patents 2001-2006. Frontiers in Microbiology, 2017, 8, 2009.
  • 45. Adedayo, M. R., Ajiboye, E. A., Akintunde, J. K., Odaibo, A. Single cell protein: as nutritional enhancer. Advances in Applied Science Research, 2011, 2(5), 396-409.
  • 46. Yousufi, M. K. To determine protein content of single cell protein produced by using various combinations of fruit wastes and two standard food fungi. International Journal of Advanced Biotechnology and Research, 2012, 3, 533-536.
  • 47. Trinci, A. P. J. Quorn mycoprotein. Mycologist, 1991, 5(3), 106-109.
  • 48. Kim, K., Choi, B., Lee, I., Kwon, S., Oh, K., Kim, A. Bioproduction of mushroom mycelium of Agaricus bisporus by commercial submerged fermentation for the production of meat analogue. Journal of the Science of Food and Agriculture, 2011, 91(9), 1561-1568.
  • 49.Stoffel, F., de Oliveira Santana, W., Gregolon, J. G. N., Kist, T., Fontana, R. C., Camassola, M. Production of edible mycoprotein using agroindustrial wastes: Influence on nutritional, chemical and biological properties. Innovative Food Science and Emerging Technologies, 2019, 58, 102227.
  • 50. Hellwig, C., Gmoser, R., Lundin, M., Taherzadeh, M. J., & Rousta, K. Fungi burger from stael bread? A case study on perceptions of a novel protein-rich food product made from an edible fungus. Foods, 2020, 9(8), 1112.
  • 51. Stoffel, F., de Oliveira Santana, W., Fontana, R. C., Camassola, M. Use of pleurotus albidus mycoprotein flour to produce cookies: Evaluation of nutritional enrichment and biological activity. Innovative Food Science and Emerging Technologies, 2021, 68, 102642.
  • 52. Sousa, I., Gouveia, L., Batista, A. P., Raymundo, A., Bandarra, N. M. Microalgae in novel food products. Food Chemistry Research Developments, 2008, 75-112.
  • 53.Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S., Rengasamy, R. A perspective on the biotechnological potential of microalgae. Critical Reviews in Microbiology, 2008, 34(2), 77-88.
  • 54. Becker, E. Micro-algae as a source of protein. Biotechnology Advances, 2007, 25, 207-210.
  • 55.Mahasneh, I. A. Production of single cell protein from five strains of the microalga Chlorella spp. (Chlorophyta). Cytobios, 1997, 90, 153-161.
  • 56. Faust, U. Production of microbial biomass. In Fundamentals of Biotechnology, Edited by Prave P., Faust U., Sittig W., Sukatsch D., VCH Publishers, Weinheim, Germany, 1987, 601-622.
  • 57. Elser, J. J., Fagan, W. F., Denno, R. F., Dobberfuhl, D. R, Folarin, A., Huberty, A., Interlandi, S., Kilham, S. S., McCauley E., Schulz, K. L., Siemann, E. H., Sterner, R. W. Nutritional constraints in terrestrial and freshwater food webs. Nature, 2000, 408, 578-580.
  • 58. Anupama, R. P. Value-added food: single cell protein. Biotechnology Advances, 2000, 18, 459-479.
  • 59. Walsh, B. J., Rydzak, F., Palazzo, A., Kraxner, F., Herrero, M., Schenk, P. M., Ciais P., Janssens, I. A., Penuelas J., Niederl-Schmidinger, A., Obersteiner, M. New feed sources key to ambitious climate targets. Carbon Balance and Management, 2015, 10, 1-8.
  • 60. Pander, B., Mortimer, Z., Woods, C., McGregor, C., Dempster, A., Thomas, L., Maliepaard, J., Mansfield, R., Rowe, P., Krabben, P. Hydrogen oxidising bacteria for production of single-cell protein and other food and feed ingredients. Engineering Biology, 2020, 4(2), 21-24.
  • 61. Synder, H. E. Microbial sources of protein. Advances in Food Research, 1970, 18, 85-140.
  • 62. Parkin, A., Sargent, F. The hows and whys of aerobic H2 metabolism. Current Opinion in Chemical Biology, 2012, 16(1-2), 26-34.
  • 63. Takors, R., Kopf, M., Mampel, J., Bluemke, W., Blombach, B., Eikmanns, B., Bengelsdorf, F. R., Botz, D. W., Dürre, P. Using gas mixtures of CO, CO2 and H2 as microbial substrates: the do's and don'ts of successful technology transfer from laboratory to production scale. Microbial Biotechnology, 2018, 11(4), 606-625.
  • 64. Hafuka, A., Sakaida, K., Satoh, H., Takahashi, M., Watanabe, Y., Okabe, S. Effects of feeding regimens on polyhydroxybutyrate production from food wate by Cupriavidus necator. Bioresource Technology, 2011, 102(3), 3551-3553.
  • 65. Liu, C., Colon, B., Ziesack, M., Silver, P., Nocera, D. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science, 352(6290), 2016, 1210-1213.
  • 66. Little, G., Ehsaan, M., Arenas-Lopez, C., Jawed, K., Winzer, K., Kovacs, K., Minton, N. Complete Genome Sequence of Cupriavidus necator H16 (DSM 428). Microbiology Resource Announcements, 2019, 8(37).
  • 67. Nyyssöla, A., Ojala, L. S., Wuokko, M., Peddinti, G., Tamminen, A., Tsitko, I., Nordlund, E., Lienemann, M. Production of endotoxin-free microbial biomass for food applications by gas fermentation of Gram-positive H2-oxidizing bacteria. ACS Food Science & Technology, 2021, 1(3), 470-479.
  • 68. Raberg, M., Volodina, E., Lin, K., Steinbüchel, A. 2017. Ralstonia eutropha H16 in progress: applications beside PHAs and establishment as production platform by advanced genetic tools. Critical Reviews in Biotechnology, 38(4), 494-510.
  • 69. Chee, J., Lakshmanan, M., Sudesh, K., Jeepery, I., Hairudin, N. The potential application of cupriavidus necator as polyhydroxyalkanoates producer and single cell protein: A review on scientific cultural and religious perspectives. Applied Food Biotechnology, 2018, 6(1), 19-34.
  • 70. Calloway, D., Margen, S. 1968. Investigation of the Nutritional Properties of Hydrogenomonas eutropha Final Report to National Aeronautics and Space Administration. NASA.
  • 71.Air Protein, 2021. https://www.airprotein.com
  • 72. Matassa, S., Batstone, D., Huelsen, T., Schnoor, J., Verstraete, W. Can direct conversion of used nitrogen to new feed and protein help feed the world? Enviromental Science & Technology, 2015, 49, 5247-5254.
  • 73.Lee, S. Y. Bacterial polyhydroxyalkanoates. Biotechnology and Bioengineering, 1996, 49(1), 1-14.
  • 74. Waslien, C. I., Calloway, D. H. Nutritional Value of Lipids in Hydrogenomonas eutropha as measured in the rat. Applied Microbiology, 1969, 18(2), 152-155.
  • 75.Lu, Y., Yu, J. Comparison analysis on the energy efficiencies and biomass yields in microbial CO2 fixation. Process Biochemistry, 2017, 62, 151-160.
  • 76. Ruuskanen, V., Givirovskiy, G., Elfving, J., Kokkonen, P., Karvinen, A., Jarvinen, L., Sillman, J., Vainnikka, M., Ahola, J. Neo-Carbon food concept: a pilot-scale hybrid biological-inorganic system with direct air capture of carbon dioxide. Journal of Cleaner Production, 2021, 278, 1-11.
  • 77. Nangle, S. N., Sakimoto, K. K., Silver, P. A., Nocera, D. G. Biological-inorganic hybrid systems as a generalized platform for chemical production. Current Opinion in Chemical Biology, 2017, 41, 107-113.
  • 78. Drake, G. L., King, C. D., Johnson, W. A., Zuraw, E. A. Study of life support systems for space missions exceeding one year in duration. In The Closed Life-Support System, Edited by Klein H., NASA, California, 1966, (1-74)
  • 79. Ercili-Cura, D., Hakamies, A., Sinisalo, L., Vainikka, P., Pitkanen, J. Food out of thin air. Food Science and Technology, 2020, 34(2), 44-48.
  • 80. Sillman, J., Nygren, L., Kahiluoto, H., Ruuskanen, V., Tamminen, A., Bajamundi, C., Nappa, M., Wuokko, M., Lindh, T., Vainnikka, P., Pitkanen, J. P., Ahola, J. Bacterial protein for food and feed generated via renewable energy and direct air capture of CO2: Can it reduce land and water use? Global Food Security, 2019, 22, 25-32.
  • 81. Novonutrients. 2021. https://www.novonutrients.com
  • 82. Solar Foods. 2021. https://solarfoods.fi
  • 83. Avecom. 2021. https://avecom.be/feed-and-food
  • 84. Deep Branch. 2021. https://deepbranch.com

An Investigations of the Possibilities of Air-Based Protein as an Alternative Protein Source

Year 2022, Volume: 5 Issue: 3, 643 - 668, 15.12.2022
https://doi.org/10.38001/ijlsb.1096533

Abstract

Nowadays, the searches on sustainable resources and new alternatives in food industry have become a necessity rather than being a trend research topics. The limited natural resources used in food production and rapid population growth are the main reasons for this situation. At this point, researches on alternative protein source have become extremely important. If current consumption habits and population growth are continued, 110% more protein crops will be needed compared to 2005 to provide sufficient protein sources to the world population in 2050, according to the researches. Access to qualified protein and water resources in the future poses a question mark considering the fact that decrease in agricultural areas, global warming, and as a result of the harmful activities of humans to biodiversity. The single-cell protein (SCP) refers to dried cells of microorganism and also called as bioprotein, microbial protein, or biomass. SCP can be obtained by many different microorganisms such as fungi, yeasts, algae, and bacteria. Hydrogen oxidizing bacteria (HOB) come into prominence on SCP production by way of many advantages. Air-based protein (ABP) is an SCP obtained by growing, purifying, and drying of HOB in bioreactors. The obtained biomass is a source of lipids, carbohydrates, vitamins and minerals in addition to protein. All these reasons point out the potential of ABP as an alternative and sustainable protein source. In this study, besides reviewing of researches on SCP, HOB and ABP, it was aimed to shed light on the potential areas of the ABP usage.

References

  • 1.Godfray, H., Beddington, J., Crute, I., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas S. M., Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science, 2010, 327(5967), 812-818.
  • 2. Birleşmiş Milletler. 2019. Deparment of Economic and Social Affairs, World Population Highlights.
  • 3.Tilman, D., Balzer, C., Hill, J., Befort, B. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 2011, 108 (50), 20260-20264.
  • 4. Poore, J., Nemecek, T. Reducing food's enviromental impacts through producers and consumers. Science, 2018, 360(6392), 987-992
  • 5. Gruener, O. The water footprint: water in the supply chain. The Environmentalist, 1. 2010 (93),12.
  • 6. Boland, M., Rae, A., Vereijken, J. The future supply of animal derived protein for human consumption. Trends in Food Science & Technology, 2013. 29(1), 62-73.
  • 7. Henchion, M., Hayes, M., Mullen, A., Fenelon, M., Tiwari, B. Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods, 2017, 6(7), 53.
  • 8. Bohrer, B. Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends in Food Science & Technology, 2017,65, 103-112.
  • 9. Reeds, P. Dispensable and indispensable amino acids for humans. The Journal of Nutrition, 2000.130(7), 1835-1840.
  • 10. Elango, R., Ball, R., Pencharz, P. Amino acid requirements in humans: with a special emphasis on the metabolic availability of amino acids. Amino acids, 2009, 37(1), 19-27.
  • 11.Henley, E., Taylor, J., Obukosia, S. The importance of dietary protein in human health: Combating protein deficiency in sub-Saharan Africa through trangenic biofortified sorghum. Advances in Food and Nutrition Research, 2010, 60, 21-52.
  • 12. Moughan, P. J. Dietary protein for human health. British Journal of Nutrition, 2012, 108(S2), 1-2.
  • 13. Neacsu, M., McBey, D., Johnstone, A. M. Meat reduction and plant-based food: replacement of meat, nutritional, health and social aspects. In Sustainable Protein Sources, Edited by Nadathur S. R., Scanlin L., Wanasundara, J. P. D., Elsevier, London, United Kingdom, 2017, 359-375.
  • 14. Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., Iqbal, M. M., Lobell, D. B., Travasso, M. Food Security and Food Production Systems. In Climate Change: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects, Edited by Field C. B., Barros V. R., Dokken D. J., Mach K. J., Mastrandrea M. D., Cambridge University Press, New York, 2014, 485-533.
  • 15. Semba, R. The rise and fall of protein malnutrition in global health. Annals of Nutrition and Metabolism, 2016, 69(2), 79-88.
  • 16. Wu, G., Jaeger, L., Bazer, F., Rhoads, J. Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications. The Journal of Nutritional Biochemistry, 2004, 15(8), 442-451.
  • 17. Matassa, S., Verstraete, W., Pikaar, I., Boon, N. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria. Water Research, 2016, 101, 137-146.
  • 18. Sharif, M., Zafar, M. H., Aqib, A. I., Saeed, M., Farag, M. R., Alagawany, M. Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture, 2021, 531, 735885.
  • 19. Saeed, M., Yasmin, I., Murtaza, M. A., Fatima, I., Saeed, S. Single cell protein: a novel value added food product. Pakistan Journal of Food Sciences, 2016, 26, 211-217.
  • 20.Çalışkaner, Ş., Ceylan, N., Konca, Y., Demirel, R., Çördük, M., Milli, Ü. Etil alkol vasatında üretilen tek hücre proteini (Erpin) üzerinde biyolojik bir araştırma. Türk Tarım ve Ormancılık Dergisi, 1998, 22(3), 299-304.
  • 21.Gao, Y., Li, D., Liu, Y. Production of single cell protein from soy molasses using Candida tropicalis. Annals of Microbiology, 2012, 62(3), 1165-1172.
  • 22. Goldberg, I. Single Cell Protein. 2013. Springer Science & Business Media, Berlin, Germany.
  • 23. Volova, T., Barashkov, V. Characteristics of proteins synthesized by hydrogen-oxidizing microorganisms. Applied Biochemistry and Microbiology, 2010, 46, 574-579.
  • 24. Campbell-Platt, G. Fermented Foods-a world perspective. Food Research International, 1994, 27(3), 253-257.
  • 25. Ciferri, O. Spirulina, the edible microorganism. Microbiological Reviews, 1983, 47(4), 551-578.
  • 26. Abdulqader, G., Barsanti, L., Tredici, M. Harvest of Arthrospira platensis from Lake Kossorom (Chad) and its household usage amoung the Kanembu. Journal of Applied Phycology, 2000, 12(3), 493-498.
  • 27. Nasseri, A. T., Rasoul-Amini, S., Morowvat, M. H., Ghasemi, Y. Single cell protein: production and process. American Journal of Food Technology, 2011, 6(2), 103-116.
  • 28. Srividya, Y., Joseph Kingston, J., Murali, H. S., Batra, H.V. Rapid and concurrent detection of Listeria species by Multiplex PCR. International Journal of Pharma and Bio Sciences, 2013, 4(1), 106-116.
  • 29. Matelbs, R., Tannenbaum, S. Single-cell protein. Economic Botany, 1968, 22(1), 42-50.
  • 30. Patel, S., Cook, P. The DNA-protein cross: a method for detecting specific DNA-protein complexes in crude mixtures. The EMBO journal, 1983, 2(1), 137-142.
  • 31. Steinkraus, K. Microbial biomass protein grown on edible susbtrates: the indigenous fermented foods. In Microbial Biomass Proteins, Edited by Moo-Young, M., Gregory K. F., Elsevier Applied Science, Essex, England, 1986, 33-45.
  • 32. Bekatorou, A., Psarianos, C., Koutinas, A. A. Production of food grade yeasts. Food Technology and Biotechnology, 2006, 44(3), 407-415.
  • 33. Overland, M. 2012. Potential of microbial ingredients as protein sources for farmed animals and fish. International Symposium on European Protein Position.
  • 34. Upadhyaya, S., Tiwari, K., Arora, N., Singh, D. P. Microbial protein: a valuable component for future food security. In Microbes and Enviromental Management Edited by Singh J.S., Singh D. P., Studium Press, New Delhi, 2016, 259-279
  • 35. Reihani, S. F. S., Khosravi-Darani, K. Mycoprotein production from date waste using Fusarium venenatum in a submerged culture. Applied Food Biotechnology, 2018, 5(4), 243352.
  • 36. Souza Filho, P. F., Nair, R. B., Andersson, D., Lennartsson, P. R., Taherzadeh, M. J. Vegan-mycoprotein concentrate from pea-processing industry byproduct using edible filamentous fungi. Fungal Biology and Biotechnology, 2018, 5(1), 1-10.
  • 37. Hashempour-Baltork, F., Hosseini, S. M., Assarehzadegan, M. A., Khosravi-Darani, K., Hosseini, H. Safety assays and nutritional values of mycoprotein product by Fusarium venenatum IR372C from date waste as subtrate. Journal of the Science of Food and Agriculture, 2020, 100(12), 4433-4441.
  • 38. Israelidis, C. Nutrition-Single cell protein, twenty years later. Proceedings from First Biointernational Conference. April 22, 2003, Athens, Greece.
  • 39. Vermeulen, S. J., Campbell, B. M., Ingram, J. S. Climate change and food systems. Annual Review of Environment and Resources, 2012, 37, 195-222.
  • 40. Pikaar, I., Matassa, S., Rabaey, K., Bodirsky, B., Popp, A., Herrero, M., Verstraete, W. Microbes and the next nitrogen revolution. Environmental Science and Technology, 2017, 51(13), 7297-7303.
  • 41. Mekonnen, M., Hoekstra, A. Water footprint benchmarks for crop production: A first global assessment. Ecological, 2014, 46, 214-223.
  • 42.Demirel, R., Demirel, D. Tek hücre proteinlerinin insan ve hayvan beslemede kullanımı. Journal of the Institute of Science and Technology, 2018, 8(3), 327-336.
  • 43. Edozien, J., Udo, U., Young, V., Scrimshaw, N. Effects of high levels of yeast feeding on uric acid metabolism of young men. Nature, 1970, 228(5267), 180-187.
  • 44. Ritala, A., Hakkinen, S. T., Toivari, M., Wiebe, M. G. Single cell protein state of the art, industrial landscape and patents 2001-2006. Frontiers in Microbiology, 2017, 8, 2009.
  • 45. Adedayo, M. R., Ajiboye, E. A., Akintunde, J. K., Odaibo, A. Single cell protein: as nutritional enhancer. Advances in Applied Science Research, 2011, 2(5), 396-409.
  • 46. Yousufi, M. K. To determine protein content of single cell protein produced by using various combinations of fruit wastes and two standard food fungi. International Journal of Advanced Biotechnology and Research, 2012, 3, 533-536.
  • 47. Trinci, A. P. J. Quorn mycoprotein. Mycologist, 1991, 5(3), 106-109.
  • 48. Kim, K., Choi, B., Lee, I., Kwon, S., Oh, K., Kim, A. Bioproduction of mushroom mycelium of Agaricus bisporus by commercial submerged fermentation for the production of meat analogue. Journal of the Science of Food and Agriculture, 2011, 91(9), 1561-1568.
  • 49.Stoffel, F., de Oliveira Santana, W., Gregolon, J. G. N., Kist, T., Fontana, R. C., Camassola, M. Production of edible mycoprotein using agroindustrial wastes: Influence on nutritional, chemical and biological properties. Innovative Food Science and Emerging Technologies, 2019, 58, 102227.
  • 50. Hellwig, C., Gmoser, R., Lundin, M., Taherzadeh, M. J., & Rousta, K. Fungi burger from stael bread? A case study on perceptions of a novel protein-rich food product made from an edible fungus. Foods, 2020, 9(8), 1112.
  • 51. Stoffel, F., de Oliveira Santana, W., Fontana, R. C., Camassola, M. Use of pleurotus albidus mycoprotein flour to produce cookies: Evaluation of nutritional enrichment and biological activity. Innovative Food Science and Emerging Technologies, 2021, 68, 102642.
  • 52. Sousa, I., Gouveia, L., Batista, A. P., Raymundo, A., Bandarra, N. M. Microalgae in novel food products. Food Chemistry Research Developments, 2008, 75-112.
  • 53.Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S., Rengasamy, R. A perspective on the biotechnological potential of microalgae. Critical Reviews in Microbiology, 2008, 34(2), 77-88.
  • 54. Becker, E. Micro-algae as a source of protein. Biotechnology Advances, 2007, 25, 207-210.
  • 55.Mahasneh, I. A. Production of single cell protein from five strains of the microalga Chlorella spp. (Chlorophyta). Cytobios, 1997, 90, 153-161.
  • 56. Faust, U. Production of microbial biomass. In Fundamentals of Biotechnology, Edited by Prave P., Faust U., Sittig W., Sukatsch D., VCH Publishers, Weinheim, Germany, 1987, 601-622.
  • 57. Elser, J. J., Fagan, W. F., Denno, R. F., Dobberfuhl, D. R, Folarin, A., Huberty, A., Interlandi, S., Kilham, S. S., McCauley E., Schulz, K. L., Siemann, E. H., Sterner, R. W. Nutritional constraints in terrestrial and freshwater food webs. Nature, 2000, 408, 578-580.
  • 58. Anupama, R. P. Value-added food: single cell protein. Biotechnology Advances, 2000, 18, 459-479.
  • 59. Walsh, B. J., Rydzak, F., Palazzo, A., Kraxner, F., Herrero, M., Schenk, P. M., Ciais P., Janssens, I. A., Penuelas J., Niederl-Schmidinger, A., Obersteiner, M. New feed sources key to ambitious climate targets. Carbon Balance and Management, 2015, 10, 1-8.
  • 60. Pander, B., Mortimer, Z., Woods, C., McGregor, C., Dempster, A., Thomas, L., Maliepaard, J., Mansfield, R., Rowe, P., Krabben, P. Hydrogen oxidising bacteria for production of single-cell protein and other food and feed ingredients. Engineering Biology, 2020, 4(2), 21-24.
  • 61. Synder, H. E. Microbial sources of protein. Advances in Food Research, 1970, 18, 85-140.
  • 62. Parkin, A., Sargent, F. The hows and whys of aerobic H2 metabolism. Current Opinion in Chemical Biology, 2012, 16(1-2), 26-34.
  • 63. Takors, R., Kopf, M., Mampel, J., Bluemke, W., Blombach, B., Eikmanns, B., Bengelsdorf, F. R., Botz, D. W., Dürre, P. Using gas mixtures of CO, CO2 and H2 as microbial substrates: the do's and don'ts of successful technology transfer from laboratory to production scale. Microbial Biotechnology, 2018, 11(4), 606-625.
  • 64. Hafuka, A., Sakaida, K., Satoh, H., Takahashi, M., Watanabe, Y., Okabe, S. Effects of feeding regimens on polyhydroxybutyrate production from food wate by Cupriavidus necator. Bioresource Technology, 2011, 102(3), 3551-3553.
  • 65. Liu, C., Colon, B., Ziesack, M., Silver, P., Nocera, D. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science, 352(6290), 2016, 1210-1213.
  • 66. Little, G., Ehsaan, M., Arenas-Lopez, C., Jawed, K., Winzer, K., Kovacs, K., Minton, N. Complete Genome Sequence of Cupriavidus necator H16 (DSM 428). Microbiology Resource Announcements, 2019, 8(37).
  • 67. Nyyssöla, A., Ojala, L. S., Wuokko, M., Peddinti, G., Tamminen, A., Tsitko, I., Nordlund, E., Lienemann, M. Production of endotoxin-free microbial biomass for food applications by gas fermentation of Gram-positive H2-oxidizing bacteria. ACS Food Science & Technology, 2021, 1(3), 470-479.
  • 68. Raberg, M., Volodina, E., Lin, K., Steinbüchel, A. 2017. Ralstonia eutropha H16 in progress: applications beside PHAs and establishment as production platform by advanced genetic tools. Critical Reviews in Biotechnology, 38(4), 494-510.
  • 69. Chee, J., Lakshmanan, M., Sudesh, K., Jeepery, I., Hairudin, N. The potential application of cupriavidus necator as polyhydroxyalkanoates producer and single cell protein: A review on scientific cultural and religious perspectives. Applied Food Biotechnology, 2018, 6(1), 19-34.
  • 70. Calloway, D., Margen, S. 1968. Investigation of the Nutritional Properties of Hydrogenomonas eutropha Final Report to National Aeronautics and Space Administration. NASA.
  • 71.Air Protein, 2021. https://www.airprotein.com
  • 72. Matassa, S., Batstone, D., Huelsen, T., Schnoor, J., Verstraete, W. Can direct conversion of used nitrogen to new feed and protein help feed the world? Enviromental Science & Technology, 2015, 49, 5247-5254.
  • 73.Lee, S. Y. Bacterial polyhydroxyalkanoates. Biotechnology and Bioengineering, 1996, 49(1), 1-14.
  • 74. Waslien, C. I., Calloway, D. H. Nutritional Value of Lipids in Hydrogenomonas eutropha as measured in the rat. Applied Microbiology, 1969, 18(2), 152-155.
  • 75.Lu, Y., Yu, J. Comparison analysis on the energy efficiencies and biomass yields in microbial CO2 fixation. Process Biochemistry, 2017, 62, 151-160.
  • 76. Ruuskanen, V., Givirovskiy, G., Elfving, J., Kokkonen, P., Karvinen, A., Jarvinen, L., Sillman, J., Vainnikka, M., Ahola, J. Neo-Carbon food concept: a pilot-scale hybrid biological-inorganic system with direct air capture of carbon dioxide. Journal of Cleaner Production, 2021, 278, 1-11.
  • 77. Nangle, S. N., Sakimoto, K. K., Silver, P. A., Nocera, D. G. Biological-inorganic hybrid systems as a generalized platform for chemical production. Current Opinion in Chemical Biology, 2017, 41, 107-113.
  • 78. Drake, G. L., King, C. D., Johnson, W. A., Zuraw, E. A. Study of life support systems for space missions exceeding one year in duration. In The Closed Life-Support System, Edited by Klein H., NASA, California, 1966, (1-74)
  • 79. Ercili-Cura, D., Hakamies, A., Sinisalo, L., Vainikka, P., Pitkanen, J. Food out of thin air. Food Science and Technology, 2020, 34(2), 44-48.
  • 80. Sillman, J., Nygren, L., Kahiluoto, H., Ruuskanen, V., Tamminen, A., Bajamundi, C., Nappa, M., Wuokko, M., Lindh, T., Vainnikka, P., Pitkanen, J. P., Ahola, J. Bacterial protein for food and feed generated via renewable energy and direct air capture of CO2: Can it reduce land and water use? Global Food Security, 2019, 22, 25-32.
  • 81. Novonutrients. 2021. https://www.novonutrients.com
  • 82. Solar Foods. 2021. https://solarfoods.fi
  • 83. Avecom. 2021. https://avecom.be/feed-and-food
  • 84. Deep Branch. 2021. https://deepbranch.com
There are 84 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Review Articles
Authors

Elif Erdoğan 0000-0002-5880-1340

Orhan Kaya 0000-0001-7602-4736

Esra Derin 0000-0003-4390-2453

Büşra Çakaloğlu Ebcim 0000-0003-4206-585X

Early Pub Date May 14, 2022
Publication Date December 15, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

EndNote Erdoğan E, Kaya O, Derin E, Çakaloğlu Ebcim B (December 1, 2022) Hava Bazlı Proteinin Alternatif Bir Protein Kaynağı Olarak Kullanım Olanaklarının İncelenmesi. International Journal of Life Sciences and Biotechnology 5 3 643–668.



Follow us on social networks  19277 19276 20153  22366