Research Article
BibTex RIS Cite

The Future of Marketing: The Transformative Power of Artificial Intelligence

Year 2024, Volume: 8 Issue: 15, 1 - 19, 29.02.2024
https://doi.org/10.29064/ijma.1412272

Abstract

This research offers a rich narrative explaining this multifaceted relationship by exploring the transformative impact of Artificial Intelligence (AI) on marketing by adopting a qualitative descriptive approach for in-depth exploration. The findings reveal profound implications for customer engagement, market strategy, and ethical considerations. The multifaceted integration of AI into marketing enables customer personalization and increases brand loyalty. Predictive analytics enable businesses to develop proactive strategies aligned with future market dynamics. Despite its advantages, ethical considerations surrounding data privacy and consumer consent require AI to be used responsibly and transparently. Integrated augmented reality, virtual reality, predictive customer journeys, and the Internet of Things that transform marketing dynamics must be harnessed to balance ethical concerns. A comprehensive resource for academic researchers and industry professionals, this work provides a clear roadmap for organizations to effectively leverage AI in their marketing operations in an environment of increasing reliance on digital platforms and expanding data availability.

References

  • Abakouy, R., Ennaimi, E. M., Haddadi, A. E., & Lotfi, E. (2019). Data-driven marketing: How machine learning will improve decision-making for marketers. Proceedings of the 4th International Conference on Smart City Applications, 1–5. https://doi.org/10.1145/3368756.3369024
  • Agarwal, S., Agarwal, B., & Gupta, R. (2022). Chatbots and virtual assistants: A bibliometric analysis. Library Hi Tech, 40(4), 1013–1030. https://doi.org/10.1108/LHT-09-2021-0330
  • Agrawal, A. K., Gans, J., & Goldfarb, A. (2019). The Economics of Artificial Intelligence: An Agenda. 439–462.
  • Ahmed, A. A. A., Agarwal, S., Kurniawan, Im. G. A., Anantadjaya, S. P. D., & Krishnan, C. (2022). Business boosting through sentiment analysis using the Artificial Intelligence approach. International Journal of System Assurance Engineering and Management, 13(1), 699–709. https://doi.org/10.1007/s13198-021-01594-x
  • Alawneh, Y. J., Al-Momani, T., Salman, F. N., Al-Ahmad, S. D., Kaddumi, T. A., & Al-Dlalah, M. (2023). A Detailed study analysis of artificial intelligence implementation in social media applications. 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 1191–1194. https://doi.org/10.1109/ICACITE57410.2023.10182840
  • Alzahrani, H. (2016). Artificial intelligence and customer communication. Global Journal of Computer Science and Technology, 16(1).
  • Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2021). Customer experiences in the age of artificial intelligence. Computers in Human Behavior, 114, 106548. https://doi.org/10.1016/j.chb.2020.106548
  • Araújo, T., & Casais, B. (2020). Customer acceptance of shopping-assistant chatbots. In Á. Rocha, J. L. Reis, M. K. Peter, & Z. Bogdanović (Eds.), Marketing and Smart Technologies (pp. 278–287). Springer. https://doi.org/10.1007/978-981-15-1564-4_26
  • Ayanouz, S., Abdelhakim, B. A., & Benhmed, M. (2020). A smart chatbot architecture based NLP and machine learning for health care assistance. Proceedings of the 3rd International Conference on Networking, Information Systems & Security, 1–6. https://doi.org/10.1145/3386723.3387897
  • Bag, S., Gupta, S., Kumar, A., & Sivarajah, U. (2021). An integrated artificial intelligence framework for knowledge creation and B2B marketing rational decision making for improving firm performance. Industrial Marketing Management, 92, 178–189. https://doi.org/10.1016/j.indmarman.2020.12.001
  • Bhardwaj, K. (2021). AI for Data Driven Digital Marketing [Thesis, Delhi Technological University]. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18493
  • Borsci, S., Schmettow, M., Malizia, A., Chamberlain, A., & van der Velde, F. (2023). A confirmatory factorial analysis of the Chatbot Usability Scale: A multilanguage validation. Personal and Ubiquitous Computing, 27(2), 317–330. https://doi.org/10.1007/s00779-022-01690-0
  • Brisson, A., Pereira, G., Prada, R., Paiva, A., Louchart, S., Suttie, N., Lim, T., Lopes, R., Bidarra, R., Bellotti, F., Kravcik, M., & Oliveira, M. (2012). Artificial Intelligence and personalization opportunities for serious games. Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, 8(5), Article 5. https://doi.org/10.1609/aiide.v8i5.12576
  • Bronzin, T., Prole, B., Stipić, A., & Pap, K. (2021). Artificial Intelligence (AI) brings enhanced personalized user experience. 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), 1070–1075. https://doi.org/10.23919/MIPRO52101.2021.9596938
  • Chan-Olmsted, S. M. (2019). A Review of artificial intelligence adoptions in the media industry. International Journal on Media Management, 21(3–4), 193–215. https://doi.org/10.1080/14241277.2019.1695619
  • Chatelan, A., Clerc, A., & Fonta, P.-A. (2023). ChatGPT and future artificial intelligence chatbots: What may be the influence on credentialed nutrition and dietetics practitioners? Journal of the Academy of Nutrition and Dietetics, 123(11), 1525–1531. https://doi.org/10.1016/j.jand.2023.08.001
  • Chen, J.-S., Le, T.-T.-Y., & Florence, D. (2021). Usability and responsiveness of artificial intelligence chatbot on online customer experience in e-retailing. International Journal of Retail & Distribution Management, 49(11), 1512–1531. https://doi.org/10.1108/IJRDM-08-2020-0312
  • Chen, L., Jiang, M., Jia, F., & Liu, G. (2021). Artificial intelligence adoption in business-to-business marketing: Toward a conceptual framework. Journal of Business & Industrial Marketing, 37(5), 1025–1044. https://doi.org/10.1108/JBIM-09-2020-0448
  • Daqar, M. A. A., & Smoudy, A. K. (2019). The role of artificial intelligence on enhancing customer experience. International Review of Management and Marketing, 9(4), 22.
  • De Bruyn, A., Viswanathan, V., Beh, Y. S., Brock, J. K.-U., & Von Wangenheim, F. (2020). Artificial Intelligence and marketing: Pitfalls and opportunities. Journal of Interactive Marketing, 51(1), 91–105. https://doi.org/10.1016/j.intmar.2020.04.007
  • Dumitriu, D., & Popescu, M. A.-M. (2020). Artificial intelligence solutions for digital marketing. Procedia Manufacturing, 46, 630–636. https://doi.org/10.1016/j.promfg.2020.03.090
  • Dwivedi, Y. K., & Wang, Y. (2022). Guest editorial: Artificial intelligence for B2B marketing: Challenges and opportunities. Industrial Marketing Management, 105, 109–113. https://doi.org/10.1016/j.indmarman.2022.06.001
  • Eriksson, T., Bigi, A., & Bonera, M. (2020). Think with me or think for me? On the future role of artificial intelligence in marketing strategy formulation. The TQM Journal, 32(4), 795–814. https://doi.org/10.1108/TQM-12-2019-0303
  • Følstad, A., & Skjuve, M. (2019). Chatbots for customer service: User experience and motivation. Proceedings of the 1st International Conference on Conversational User Interfaces, 1–9. https://doi.org/10.1145/3342775.3342784
  • GABELAIA, I. (2022). The applicability of artificial intelligence marketing for creating data-driven marketing strategies. Journal of Marketing Research and Case Studies, 2022(466404).
  • Garg, P., & Pahuja, S. (2020). Social media: Concept, role, categories, trends, social media and AI, impact on youth, careers, recommendations. In Managing Social Media Practices in the Digital Economy (pp. 172–192). IGI Global. https://doi.org/10.4018/978-1-7998-2185-4.ch008
  • Garg, V., Aggarwal, S., Tiwari, P., & Chatterjee, P. (2021). Applications of Artificial Intelligence in Business and Finance: Modern Trends. CRC Press.
  • Goldsteen, A., Ezov, G., Shmelkin, R., Moffie, M., & Farkash, A. (2022). Data minimization for GDPR compliance in machine learning models. AI and Ethics, 2(3), 477–491. https://doi.org/10.1007/s43681-021-00095-8
  • Haleem, A., Javaid, M., Asim Qadri, M., Pratap Singh, R., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119–132. https://doi.org/10.1016/j.ijin.2022.08.005
  • Hasal, M., Nowaková, J., Ahmed Saghair, K., Abdulla, H., Snášel, V., & Ogiela, L. (2021). Chatbots: Security, privacy, data protection, and social aspects. Concurrency and Computation: Practice and Experience, 33(19), e6426. https://doi.org/10.1002/cpe.6426
  • Hashimoto, D. A., Rosman, G., Rus, D., & Meireles, O. R. (2018). Artificial intelligence in surgery: Promises and perils. Annals of Surgery, 268(1), 70–76. https://doi.org/10.1097/SLA.0000000000002693
  • Hermann, E. (2022). Leveraging artificial intelligence in marketing for social good—An ethical perspective. Journal of Business Ethics, 179(1), 43–61. https://doi.org/10.1007/s10551-021-04843-y
  • Huang, M.-H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30–50. https://doi.org/10.1007/s11747-020-00749-9
  • Huang, M.-H., & Rust, R. T. (2022). A framework for collaborative artificial intelligence in marketing. Journal of Retailing, 98(2), 209–223. https://doi.org/10.1016/j.jretai.2021.03.001
  • Jenneboer, L., Herrando, C., & Constantinides, E. (2022). The impact of chatbots on customer loyalty: A systematic literature review. Journal of Theoretical and Applied Electronic Commerce Research, 17(1), Article 1. https://doi.org/10.3390/jtaer17010011
  • Jin, G. Z. (2018). Artificial intelligence and consumer privacy. In The economics of artificial intelligence: An agenda (pp. 439–462). University of Chicago Press.
  • Jones, V. K. (2018). Voice-activated change: Marketing in the age of artificial intelligence and virtual assistants. Journal of Brand Strategy, 7(3), 233–245.
  • Ke, T. T., & Sudhir, K. (2023). Privacy rights and data security: GDPR and personal data markets. Management Science, 69(8), 4389–4412. https://doi.org/10.1287/mnsc.2022.4614
  • Kesa, A., & Kerikmäe, T. (2020). Artificial intelligence and the GDPR: Inevitable Nemeses? TalTech Journal of European Studies, 10(3), 68–90. https://doi.org/10.1515/bjes-2020-0022
  • Keskinbora, K. H. (2019). Medical ethics considerations on artificial intelligence. Journal of Clinical Neuroscience, 64, 277–282. https://doi.org/10.1016/j.jocn.2019.03.001
  • Khan, M. M. (2020). Development of an e-commerce Sales Chatbot. 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), 173–176. https://doi.org/10.1109/HONET50430.2020.9322667
  • Kietzmann, J., Paschen, J., & Treen, E. (2018). Artificial intelligence in advertising: how marketers can leverage artificial intelligence along the consumer journey. Journal of Advertising Research, 58(3), 263–267. https://doi.org/10.2501/JAR-2018-035
  • Kushwaha, A. K., Kumar, P., & Kar, A. K. (2021). What impacts customer experience for B2B enterprises on using AI-enabled chatbots? Insights from Big data analytics. Industrial Marketing Management, 98, 207–221. https://doi.org/10.1016/j.indmarman.2021.08.011
  • Lambrecht, P., & Peter, M. K. (2022). The influence of digital assistants on search engine strategies: recommendations for voice search optimization. In J. L. Reis, M. K. Peter, R. Cayolla, & Z. Bogdanović (Eds.), Marketing and Smart Technologies (pp. 665–672). Springer Nature. https://doi.org/10.1007/978-981-16-9272-7_55
  • Laux, J., Wachter, S., & Mittelstadt, B. (2021). Neutralizing online behavioural advertising: Algorithmic targeting with market power as an unfair commercial practice. Common Market Law Review, 58(3). https://kluwerlawonline.com/api/Product/CitationPDFURL?file=Journals\COLA\COLA2021048.pdf
  • Lee, S. B. (2020). Chatbots and communication: The growing role of artificial intelligence in addressing and shaping customer needs. Business Communication Research and Practice, 3(2), 103–111. https://doi.org/10.22682/bcrp.2020.3.2.103
  • Li, H. (2019). Special Section Introduction: Artificial intelligence and advertising. Journal of Advertising, 48(4), 333–337. https://doi.org/10.1080/00913367.2019.1654947
  • Lippi, M., Contissa, G., Jablonowska, A., Lagioia, F., Micklitz, H.-W., Palka, P., Sartor, G., & Torroni, P. (2020). The Force Awakens: Artificial Intelligence for Consumer Law. Journal of Artificial Intelligence Research, 67, 169–190. https://doi.org/10.1613/jair.1.11519
  • Liu, X., Shin, H., & Burns, A. C. (2021). Examining the impact of luxury brand’s social media marketing on customer engagement: Using big data analytics and natural language processing. Journal of Business Research, 125, 815–826. https://doi.org/10.1016/j.jbusres.2019.04.042
  • Liu, Y., Alzahrani, I. R., Jaleel, R. A., & Sulaie, S. A. (2023). An efficient smart data mining framework based cloud internet of things for developing artificial intelligence of marketing information analysis. Information Processing & Management, 60(1), 103121. https://doi.org/10.1016/j.ipm.2022.103121
  • Liu, Y., & Chen, W. (2021). Optimization of brand marketing strategy of intelligent technology under the background of artificial intelligence. Mobile Information Systems, 2021, e9507917. https://doi.org/10.1155/2021/9507917
  • Liu, Y., & Li, J. (2022). Brand marketing decision support system based on computer vision and parallel computing. Wireless Communications and Mobile Computing, 2022, e7416106. https://doi.org/10.1155/2022/7416106
  • Lopez, A., & Garza, R. (2023). Consumer bias against evaluations received by artificial intelligence: The mediation effect of lack of transparency anxiety. Journal of Research in Interactive Marketing, 17(6), 831–847. https://doi.org/10.1108/JRIM-07-2021-0192
  • Ma, L., & Sun, B. (2020). Machine learning and AI in marketing – Connecting computing power to human insights. International Journal of Research in Marketing, 37(3), 481–504. https://doi.org/10.1016/j.ijresmar.2020.04.005
  • Malodia, S., Islam, N., Kaur, P., & Dhir, A. (2021). Why do people use artificial intelligence (AI)-enabled voice assistants? IEEE Transactions on Engineering Management, 1–15. https://doi.org/10.1109/TEM.2021.3117884
  • Malthouse, E., & Copulsky, J. (2023). Artificial intelligence ecosystems for marketing communications. International Journal of Advertising, 42(1), 128–140. https://doi.org/10.1080/02650487.2022.2122249
  • Mari, A. (2019). The Rise of Machine Learning in Marketing: Goal, Process and Benefit of AI-driven marketing. Mari, Alex (2019). The Rise of Machine Learning in Marketing: Goal, Process and Benefit of AI-Driven Marketing. Zurich: Swiss Cognitive. https://doi.org/10.5167/uzh-197751
  • Mariciuc, D. F. (2022). Using Virtual Assistants as Relationship Marketing Instruments. Ovidius University Annals, Economic Sciences Series, 22(1), 634–641.
  • Mathew, J., & Scholar, P. G. (2021). A study into the use of artificial intelligence in e-commerce stock management and product suggestion generation for end users. Proceedings of the National Conference on Emerging Computer Applications (NCECA), 103.
  • Mazurek, G., & Małagocka, K. (2019). Perception of privacy and data protection in the context of the development of artificial intelligence. Journal of Management Analytics, 6(4), 344–364. https://doi.org/10.1080/23270012.2019.1671243
  • Mokhtari, S., Yen, K. K., & Liu, J. (2021). Effectiveness of artificial intelligence in stock market prediction based on machine learning. International Journal of Computer Applications, 183(7), 1–8. https://doi.org/10.5120/ijca2021921347
  • Montjoye, Y.-A. de, Farzanehfar, A., Hendrickx, J., & Rocher, L. (2017). Solving artificial intelligence’s privacy problem. Field Actions Science Reports. The Journal of Field Actions, Special Issue 17, Article Special Issue 17.
  • Ngai, E. W. T., & Wu, Y. (2022). Machine learning in marketing: A literature review, conceptual framework and research agenda. Journal of Business Research, 145, 35–48. https://doi.org/10.1016/j.jbusres.2022.02.049
  • Nwachukwu, D., & Affen, M. (2023). Artificial Intelligence Marketing Practices: The Way Forward to Better Customer Experience Management in Africa (Systematic Literature Review). 9, 44–62.
  • Pinarbasi, F., & Akpınar, H. M. (2020). Transformation of marketing with technology: case approach for artificial intelligence. In Handbook of Research on Strategic Fit and Design in Business Ecosystems (pp. 144–165). IGI Global. https://doi.org/10.4018/978-1-7998-1125-1.ch007
  • Prentice, C., Weaven, S., & Wong, I. A. (2020). Linking AI quality performance and customer engagement: The moderating effect of AI preference. International Journal of Hospitality Management, 90, 102629. https://doi.org/10.1016/j.ijhm.2020.102629
  • Rabby, F., & Chimhundu, D. R. (2021). Artificial Intelligence in Digital Marketing Influences Consumer Behaviour: A Review and Theoretical Foundation for Future Research. 25(5).
  • Raiter, O. (2021). Segmentation of bank consumers for artificial intelligence marketing. International Journal of Contemporary Financial Issues, 1(1), 39–54.
  • Ramachandran, K. K., Apsara Saleth Mary, A., Hawladar, S., Asokk, D., Bhaskar, B., & Pitroda, J. R. (2022). Machine learning and role of artificial intelligence in optimizing work performance and employee behavior. Materials Today: Proceedings, 51, 2327–2331. https://doi.org/10.1016/j.matpr.2021.11.544
  • Ray, R., Khandelwal, P., & Baranidharan, B. (2018). A survey on stock market prediction using artificial intelligence techniques. 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), 594–598. https://doi.org/10.1109/ICSSIT.2018.8748680
  • Ray, S. (2019). A quick review of machine learning algorithms. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 35–39. https://doi.org/10.1109/COMITCon.2019.8862451
  • Riikkinen, M., Saarijärvi, H., Sarlin, P., & Lähteenmäki, I. (2018). Using artificial intelligence to create value in insurance. International Journal of Bank Marketing, 36(6), 1145–1168. https://doi.org/10.1108/IJBM-01-2017-0015
  • Rk, D., & Dd, P. (2010). Application of artificial neural network for stock market predictions: a review of literature. International Journal of Machine Intelligence, 2(2), 14–17. https://doi.org/10.9735/0975-2927.2.2.14-17
  • Sadiku, M. N. O., Ashaolu, T. J., Ajayi-Majebi, A., & Musa, S. M. (2021). Artificial Intelligence in Social Media. International Journal Of Scientific Advances, 2(1). https://doi.org/10.51542/ijscia.v2i1.4
  • Safdar, N. M., Banja, J. D., & Meltzer, C. C. (2020). Ethical considerations in artificial intelligence. European Journal of Radiology, 122, 108768. https://doi.org/10.1016/j.ejrad.2019.108768
  • Sawaya, S., Kenneally, E., Nelson, D., & Schumacher, G. (2023). Artificial intelligence and the weaponization of genetic data. In D. Greenbaum (Ed.), Cyberbiosecurity: A New Field to Deal with Emerging Threats (pp. 265–278). Springer International Publishing. https://doi.org/10.1007/978-3-031-26034-6_14
  • Shaik, M. (2023). Impact of artificial intelligence on marketing. East Asian Journal of Multidisciplinary Research, 2(3), Article 3. https://doi.org/10.55927/eajmr.v2i3.3112
  • Smith, T., Stiller, B., Guszcza, J., & Davenport, T. (2019). Analytics and AI-driven enterprises thrive in the Age of With. Deloitte Insights.
  • Song, M., Xing, X., Duan, Y., Cohen, J., & Mou, J. (2022). Will artificial intelligence replace human customer service? The impact of communication quality and privacy risks on adoption intention. Journal of Retailing and Consumer Services, 66, 102900. https://doi.org/10.1016/j.jretconser.2021.102900
  • Stephens, E. (2023). The mechanical Turk: A short history of ‘artificial artificial intelligence.’ Cultural Studies, 37(1), 65–87. https://doi.org/10.1080/09502386.2022.2042580
  • Sterne, J. (2017). Artificial Intelligence for Marketing: Practical Applications. John Wiley & Sons. Surendro, K. (2019). Predictive analytics for predicting customer behavior. 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), 230–233.
  • Thandekkattu, S. G., & Kalaiarasi, M. (2022). Customer-centric e-commerce implementing artificial intelligence for better sales and service. Proceedings of Second International Conference on Advances in Computer Engineering and Communication Systems: ICACECS 2021, 141–152.
  • Thomas, N. T. (2016). An e-business chatbot using AIML and LSA. 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2740–2742. https://doi.org/10.1109/ICACCI.2016.7732476
  • Tiwari, R. (2023). The impact of AI and machine learning on job displacement and employment opportunities. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT, 07(01). https://doi.org/10.55041/IJSREM17506
  • Torous, J., Bucci, S., Bell, I. H., Kessing, L. V., Faurholt-Jepsen, M., Whelan, P., Carvalho, A. F., Keshavan, M., Linardon, J., & Firth, J. (2021). The growing field of digital psychiatry: Current evidence and the future of apps, social media, chatbots and virtual reality. World Psychiatry, 20(3), 318–335. https://doi.org/10.1002/wps.20883
  • Verma, S., Sharma, R., Deb, S., & Maitra, D. (2021). Artificial intelligence in marketing: Systematic review and future research direction. International Journal of Information Management Data Insights, 1(1), 100002. https://doi.org/10.1016/j.jjimei.2020.100002
  • Villegas-Ch, W., Amores-Falconi, R., & Coronel-Silva, E. (2023). Design proposal for a virtual shopping assistant for people with vision problems applying artificial intelligence techniques. Big Data and Cognitive Computing, 7(2), Article 2. https://doi.org/10.3390/bdcc7020096
  • Vlačić, B., Corbo, L., Costa e Silva, S., & Dabić, M. (2021). The evolving role of artificial intelligence in marketing: A review and research agenda. Journal of Business Research, 128, 187–203. https://doi.org/10.1016/j.jbusres.2021.01.055
  • Wang, C. (2022). Efficient customer segmentation in digital marketing using deep learning with swarm intelligence approach. Information Processing & Management, 59(6), 103085. https://doi.org/10.1016/j.ipm.2022.103085
  • Wu, C.-W., & Monfort, A. (2023). Role of artificial intelligence in marketing strategies and performance. Psychology & Marketing, 40(3), 484–496. https://doi.org/10.1002/mar.21737
  • Yau, K.-L. A., Saad, N. M., & Chong, Y.-W. (2021). Artificial intelligence marketing (AIM) for enhancing customer relationships. Applied Sciences, 11(18), Article 18. https://doi.org/10.3390/app11188562
  • Yeği̇n, T. (2020). The Place And Future of Artificial Intelligence In Marketing Strategies. EKEV Akademi Dergisi, 81, Article 81.
  • Zulaikha, S., Mohamed, H., Kurniawati, M., Rusgianto, S., & Rusmita, S. A. (2020). Customer predictive analytics using artificial intelligence. The Singapore Economic Review, 1–12. https://doi.org/10.1142/S0217590820480021

The Future of Marketing: The Transformative Power of Artificial Intelligence

Year 2024, Volume: 8 Issue: 15, 1 - 19, 29.02.2024
https://doi.org/10.29064/ijma.1412272

Abstract

This research offers a rich narrative explaining this multifaceted relationship by exploring the transformative impact of Artificial Intelligence (AI) on marketing by adopting a qualitative descriptive approach for in-depth exploration. The findings reveal profound implications for customer engagement, market strategy, and ethical considerations. The multifaceted integration of AI into marketing enables customer personalization and increases brand loyalty. Predictive analytics enable businesses to develop proactive strategies aligned with future market dynamics. Despite its advantages, ethical considerations surrounding data privacy and consumer consent require AI to be used responsibly and transparently. Integrated augmented reality, virtual reality, predictive customer journeys, and the Internet of Things that transform marketing dynamics must be harnessed to balance ethical concerns. A comprehensive resource for academic researchers and industry professionals, this work provides a clear roadmap for organizations to effectively leverage AI in their marketing operations in an environment of increasing reliance on digital platforms and expanding data availability.

References

  • Abakouy, R., Ennaimi, E. M., Haddadi, A. E., & Lotfi, E. (2019). Data-driven marketing: How machine learning will improve decision-making for marketers. Proceedings of the 4th International Conference on Smart City Applications, 1–5. https://doi.org/10.1145/3368756.3369024
  • Agarwal, S., Agarwal, B., & Gupta, R. (2022). Chatbots and virtual assistants: A bibliometric analysis. Library Hi Tech, 40(4), 1013–1030. https://doi.org/10.1108/LHT-09-2021-0330
  • Agrawal, A. K., Gans, J., & Goldfarb, A. (2019). The Economics of Artificial Intelligence: An Agenda. 439–462.
  • Ahmed, A. A. A., Agarwal, S., Kurniawan, Im. G. A., Anantadjaya, S. P. D., & Krishnan, C. (2022). Business boosting through sentiment analysis using the Artificial Intelligence approach. International Journal of System Assurance Engineering and Management, 13(1), 699–709. https://doi.org/10.1007/s13198-021-01594-x
  • Alawneh, Y. J., Al-Momani, T., Salman, F. N., Al-Ahmad, S. D., Kaddumi, T. A., & Al-Dlalah, M. (2023). A Detailed study analysis of artificial intelligence implementation in social media applications. 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 1191–1194. https://doi.org/10.1109/ICACITE57410.2023.10182840
  • Alzahrani, H. (2016). Artificial intelligence and customer communication. Global Journal of Computer Science and Technology, 16(1).
  • Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2021). Customer experiences in the age of artificial intelligence. Computers in Human Behavior, 114, 106548. https://doi.org/10.1016/j.chb.2020.106548
  • Araújo, T., & Casais, B. (2020). Customer acceptance of shopping-assistant chatbots. In Á. Rocha, J. L. Reis, M. K. Peter, & Z. Bogdanović (Eds.), Marketing and Smart Technologies (pp. 278–287). Springer. https://doi.org/10.1007/978-981-15-1564-4_26
  • Ayanouz, S., Abdelhakim, B. A., & Benhmed, M. (2020). A smart chatbot architecture based NLP and machine learning for health care assistance. Proceedings of the 3rd International Conference on Networking, Information Systems & Security, 1–6. https://doi.org/10.1145/3386723.3387897
  • Bag, S., Gupta, S., Kumar, A., & Sivarajah, U. (2021). An integrated artificial intelligence framework for knowledge creation and B2B marketing rational decision making for improving firm performance. Industrial Marketing Management, 92, 178–189. https://doi.org/10.1016/j.indmarman.2020.12.001
  • Bhardwaj, K. (2021). AI for Data Driven Digital Marketing [Thesis, Delhi Technological University]. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18493
  • Borsci, S., Schmettow, M., Malizia, A., Chamberlain, A., & van der Velde, F. (2023). A confirmatory factorial analysis of the Chatbot Usability Scale: A multilanguage validation. Personal and Ubiquitous Computing, 27(2), 317–330. https://doi.org/10.1007/s00779-022-01690-0
  • Brisson, A., Pereira, G., Prada, R., Paiva, A., Louchart, S., Suttie, N., Lim, T., Lopes, R., Bidarra, R., Bellotti, F., Kravcik, M., & Oliveira, M. (2012). Artificial Intelligence and personalization opportunities for serious games. Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, 8(5), Article 5. https://doi.org/10.1609/aiide.v8i5.12576
  • Bronzin, T., Prole, B., Stipić, A., & Pap, K. (2021). Artificial Intelligence (AI) brings enhanced personalized user experience. 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), 1070–1075. https://doi.org/10.23919/MIPRO52101.2021.9596938
  • Chan-Olmsted, S. M. (2019). A Review of artificial intelligence adoptions in the media industry. International Journal on Media Management, 21(3–4), 193–215. https://doi.org/10.1080/14241277.2019.1695619
  • Chatelan, A., Clerc, A., & Fonta, P.-A. (2023). ChatGPT and future artificial intelligence chatbots: What may be the influence on credentialed nutrition and dietetics practitioners? Journal of the Academy of Nutrition and Dietetics, 123(11), 1525–1531. https://doi.org/10.1016/j.jand.2023.08.001
  • Chen, J.-S., Le, T.-T.-Y., & Florence, D. (2021). Usability and responsiveness of artificial intelligence chatbot on online customer experience in e-retailing. International Journal of Retail & Distribution Management, 49(11), 1512–1531. https://doi.org/10.1108/IJRDM-08-2020-0312
  • Chen, L., Jiang, M., Jia, F., & Liu, G. (2021). Artificial intelligence adoption in business-to-business marketing: Toward a conceptual framework. Journal of Business & Industrial Marketing, 37(5), 1025–1044. https://doi.org/10.1108/JBIM-09-2020-0448
  • Daqar, M. A. A., & Smoudy, A. K. (2019). The role of artificial intelligence on enhancing customer experience. International Review of Management and Marketing, 9(4), 22.
  • De Bruyn, A., Viswanathan, V., Beh, Y. S., Brock, J. K.-U., & Von Wangenheim, F. (2020). Artificial Intelligence and marketing: Pitfalls and opportunities. Journal of Interactive Marketing, 51(1), 91–105. https://doi.org/10.1016/j.intmar.2020.04.007
  • Dumitriu, D., & Popescu, M. A.-M. (2020). Artificial intelligence solutions for digital marketing. Procedia Manufacturing, 46, 630–636. https://doi.org/10.1016/j.promfg.2020.03.090
  • Dwivedi, Y. K., & Wang, Y. (2022). Guest editorial: Artificial intelligence for B2B marketing: Challenges and opportunities. Industrial Marketing Management, 105, 109–113. https://doi.org/10.1016/j.indmarman.2022.06.001
  • Eriksson, T., Bigi, A., & Bonera, M. (2020). Think with me or think for me? On the future role of artificial intelligence in marketing strategy formulation. The TQM Journal, 32(4), 795–814. https://doi.org/10.1108/TQM-12-2019-0303
  • Følstad, A., & Skjuve, M. (2019). Chatbots for customer service: User experience and motivation. Proceedings of the 1st International Conference on Conversational User Interfaces, 1–9. https://doi.org/10.1145/3342775.3342784
  • GABELAIA, I. (2022). The applicability of artificial intelligence marketing for creating data-driven marketing strategies. Journal of Marketing Research and Case Studies, 2022(466404).
  • Garg, P., & Pahuja, S. (2020). Social media: Concept, role, categories, trends, social media and AI, impact on youth, careers, recommendations. In Managing Social Media Practices in the Digital Economy (pp. 172–192). IGI Global. https://doi.org/10.4018/978-1-7998-2185-4.ch008
  • Garg, V., Aggarwal, S., Tiwari, P., & Chatterjee, P. (2021). Applications of Artificial Intelligence in Business and Finance: Modern Trends. CRC Press.
  • Goldsteen, A., Ezov, G., Shmelkin, R., Moffie, M., & Farkash, A. (2022). Data minimization for GDPR compliance in machine learning models. AI and Ethics, 2(3), 477–491. https://doi.org/10.1007/s43681-021-00095-8
  • Haleem, A., Javaid, M., Asim Qadri, M., Pratap Singh, R., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119–132. https://doi.org/10.1016/j.ijin.2022.08.005
  • Hasal, M., Nowaková, J., Ahmed Saghair, K., Abdulla, H., Snášel, V., & Ogiela, L. (2021). Chatbots: Security, privacy, data protection, and social aspects. Concurrency and Computation: Practice and Experience, 33(19), e6426. https://doi.org/10.1002/cpe.6426
  • Hashimoto, D. A., Rosman, G., Rus, D., & Meireles, O. R. (2018). Artificial intelligence in surgery: Promises and perils. Annals of Surgery, 268(1), 70–76. https://doi.org/10.1097/SLA.0000000000002693
  • Hermann, E. (2022). Leveraging artificial intelligence in marketing for social good—An ethical perspective. Journal of Business Ethics, 179(1), 43–61. https://doi.org/10.1007/s10551-021-04843-y
  • Huang, M.-H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30–50. https://doi.org/10.1007/s11747-020-00749-9
  • Huang, M.-H., & Rust, R. T. (2022). A framework for collaborative artificial intelligence in marketing. Journal of Retailing, 98(2), 209–223. https://doi.org/10.1016/j.jretai.2021.03.001
  • Jenneboer, L., Herrando, C., & Constantinides, E. (2022). The impact of chatbots on customer loyalty: A systematic literature review. Journal of Theoretical and Applied Electronic Commerce Research, 17(1), Article 1. https://doi.org/10.3390/jtaer17010011
  • Jin, G. Z. (2018). Artificial intelligence and consumer privacy. In The economics of artificial intelligence: An agenda (pp. 439–462). University of Chicago Press.
  • Jones, V. K. (2018). Voice-activated change: Marketing in the age of artificial intelligence and virtual assistants. Journal of Brand Strategy, 7(3), 233–245.
  • Ke, T. T., & Sudhir, K. (2023). Privacy rights and data security: GDPR and personal data markets. Management Science, 69(8), 4389–4412. https://doi.org/10.1287/mnsc.2022.4614
  • Kesa, A., & Kerikmäe, T. (2020). Artificial intelligence and the GDPR: Inevitable Nemeses? TalTech Journal of European Studies, 10(3), 68–90. https://doi.org/10.1515/bjes-2020-0022
  • Keskinbora, K. H. (2019). Medical ethics considerations on artificial intelligence. Journal of Clinical Neuroscience, 64, 277–282. https://doi.org/10.1016/j.jocn.2019.03.001
  • Khan, M. M. (2020). Development of an e-commerce Sales Chatbot. 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), 173–176. https://doi.org/10.1109/HONET50430.2020.9322667
  • Kietzmann, J., Paschen, J., & Treen, E. (2018). Artificial intelligence in advertising: how marketers can leverage artificial intelligence along the consumer journey. Journal of Advertising Research, 58(3), 263–267. https://doi.org/10.2501/JAR-2018-035
  • Kushwaha, A. K., Kumar, P., & Kar, A. K. (2021). What impacts customer experience for B2B enterprises on using AI-enabled chatbots? Insights from Big data analytics. Industrial Marketing Management, 98, 207–221. https://doi.org/10.1016/j.indmarman.2021.08.011
  • Lambrecht, P., & Peter, M. K. (2022). The influence of digital assistants on search engine strategies: recommendations for voice search optimization. In J. L. Reis, M. K. Peter, R. Cayolla, & Z. Bogdanović (Eds.), Marketing and Smart Technologies (pp. 665–672). Springer Nature. https://doi.org/10.1007/978-981-16-9272-7_55
  • Laux, J., Wachter, S., & Mittelstadt, B. (2021). Neutralizing online behavioural advertising: Algorithmic targeting with market power as an unfair commercial practice. Common Market Law Review, 58(3). https://kluwerlawonline.com/api/Product/CitationPDFURL?file=Journals\COLA\COLA2021048.pdf
  • Lee, S. B. (2020). Chatbots and communication: The growing role of artificial intelligence in addressing and shaping customer needs. Business Communication Research and Practice, 3(2), 103–111. https://doi.org/10.22682/bcrp.2020.3.2.103
  • Li, H. (2019). Special Section Introduction: Artificial intelligence and advertising. Journal of Advertising, 48(4), 333–337. https://doi.org/10.1080/00913367.2019.1654947
  • Lippi, M., Contissa, G., Jablonowska, A., Lagioia, F., Micklitz, H.-W., Palka, P., Sartor, G., & Torroni, P. (2020). The Force Awakens: Artificial Intelligence for Consumer Law. Journal of Artificial Intelligence Research, 67, 169–190. https://doi.org/10.1613/jair.1.11519
  • Liu, X., Shin, H., & Burns, A. C. (2021). Examining the impact of luxury brand’s social media marketing on customer engagement: Using big data analytics and natural language processing. Journal of Business Research, 125, 815–826. https://doi.org/10.1016/j.jbusres.2019.04.042
  • Liu, Y., Alzahrani, I. R., Jaleel, R. A., & Sulaie, S. A. (2023). An efficient smart data mining framework based cloud internet of things for developing artificial intelligence of marketing information analysis. Information Processing & Management, 60(1), 103121. https://doi.org/10.1016/j.ipm.2022.103121
  • Liu, Y., & Chen, W. (2021). Optimization of brand marketing strategy of intelligent technology under the background of artificial intelligence. Mobile Information Systems, 2021, e9507917. https://doi.org/10.1155/2021/9507917
  • Liu, Y., & Li, J. (2022). Brand marketing decision support system based on computer vision and parallel computing. Wireless Communications and Mobile Computing, 2022, e7416106. https://doi.org/10.1155/2022/7416106
  • Lopez, A., & Garza, R. (2023). Consumer bias against evaluations received by artificial intelligence: The mediation effect of lack of transparency anxiety. Journal of Research in Interactive Marketing, 17(6), 831–847. https://doi.org/10.1108/JRIM-07-2021-0192
  • Ma, L., & Sun, B. (2020). Machine learning and AI in marketing – Connecting computing power to human insights. International Journal of Research in Marketing, 37(3), 481–504. https://doi.org/10.1016/j.ijresmar.2020.04.005
  • Malodia, S., Islam, N., Kaur, P., & Dhir, A. (2021). Why do people use artificial intelligence (AI)-enabled voice assistants? IEEE Transactions on Engineering Management, 1–15. https://doi.org/10.1109/TEM.2021.3117884
  • Malthouse, E., & Copulsky, J. (2023). Artificial intelligence ecosystems for marketing communications. International Journal of Advertising, 42(1), 128–140. https://doi.org/10.1080/02650487.2022.2122249
  • Mari, A. (2019). The Rise of Machine Learning in Marketing: Goal, Process and Benefit of AI-driven marketing. Mari, Alex (2019). The Rise of Machine Learning in Marketing: Goal, Process and Benefit of AI-Driven Marketing. Zurich: Swiss Cognitive. https://doi.org/10.5167/uzh-197751
  • Mariciuc, D. F. (2022). Using Virtual Assistants as Relationship Marketing Instruments. Ovidius University Annals, Economic Sciences Series, 22(1), 634–641.
  • Mathew, J., & Scholar, P. G. (2021). A study into the use of artificial intelligence in e-commerce stock management and product suggestion generation for end users. Proceedings of the National Conference on Emerging Computer Applications (NCECA), 103.
  • Mazurek, G., & Małagocka, K. (2019). Perception of privacy and data protection in the context of the development of artificial intelligence. Journal of Management Analytics, 6(4), 344–364. https://doi.org/10.1080/23270012.2019.1671243
  • Mokhtari, S., Yen, K. K., & Liu, J. (2021). Effectiveness of artificial intelligence in stock market prediction based on machine learning. International Journal of Computer Applications, 183(7), 1–8. https://doi.org/10.5120/ijca2021921347
  • Montjoye, Y.-A. de, Farzanehfar, A., Hendrickx, J., & Rocher, L. (2017). Solving artificial intelligence’s privacy problem. Field Actions Science Reports. The Journal of Field Actions, Special Issue 17, Article Special Issue 17.
  • Ngai, E. W. T., & Wu, Y. (2022). Machine learning in marketing: A literature review, conceptual framework and research agenda. Journal of Business Research, 145, 35–48. https://doi.org/10.1016/j.jbusres.2022.02.049
  • Nwachukwu, D., & Affen, M. (2023). Artificial Intelligence Marketing Practices: The Way Forward to Better Customer Experience Management in Africa (Systematic Literature Review). 9, 44–62.
  • Pinarbasi, F., & Akpınar, H. M. (2020). Transformation of marketing with technology: case approach for artificial intelligence. In Handbook of Research on Strategic Fit and Design in Business Ecosystems (pp. 144–165). IGI Global. https://doi.org/10.4018/978-1-7998-1125-1.ch007
  • Prentice, C., Weaven, S., & Wong, I. A. (2020). Linking AI quality performance and customer engagement: The moderating effect of AI preference. International Journal of Hospitality Management, 90, 102629. https://doi.org/10.1016/j.ijhm.2020.102629
  • Rabby, F., & Chimhundu, D. R. (2021). Artificial Intelligence in Digital Marketing Influences Consumer Behaviour: A Review and Theoretical Foundation for Future Research. 25(5).
  • Raiter, O. (2021). Segmentation of bank consumers for artificial intelligence marketing. International Journal of Contemporary Financial Issues, 1(1), 39–54.
  • Ramachandran, K. K., Apsara Saleth Mary, A., Hawladar, S., Asokk, D., Bhaskar, B., & Pitroda, J. R. (2022). Machine learning and role of artificial intelligence in optimizing work performance and employee behavior. Materials Today: Proceedings, 51, 2327–2331. https://doi.org/10.1016/j.matpr.2021.11.544
  • Ray, R., Khandelwal, P., & Baranidharan, B. (2018). A survey on stock market prediction using artificial intelligence techniques. 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), 594–598. https://doi.org/10.1109/ICSSIT.2018.8748680
  • Ray, S. (2019). A quick review of machine learning algorithms. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), 35–39. https://doi.org/10.1109/COMITCon.2019.8862451
  • Riikkinen, M., Saarijärvi, H., Sarlin, P., & Lähteenmäki, I. (2018). Using artificial intelligence to create value in insurance. International Journal of Bank Marketing, 36(6), 1145–1168. https://doi.org/10.1108/IJBM-01-2017-0015
  • Rk, D., & Dd, P. (2010). Application of artificial neural network for stock market predictions: a review of literature. International Journal of Machine Intelligence, 2(2), 14–17. https://doi.org/10.9735/0975-2927.2.2.14-17
  • Sadiku, M. N. O., Ashaolu, T. J., Ajayi-Majebi, A., & Musa, S. M. (2021). Artificial Intelligence in Social Media. International Journal Of Scientific Advances, 2(1). https://doi.org/10.51542/ijscia.v2i1.4
  • Safdar, N. M., Banja, J. D., & Meltzer, C. C. (2020). Ethical considerations in artificial intelligence. European Journal of Radiology, 122, 108768. https://doi.org/10.1016/j.ejrad.2019.108768
  • Sawaya, S., Kenneally, E., Nelson, D., & Schumacher, G. (2023). Artificial intelligence and the weaponization of genetic data. In D. Greenbaum (Ed.), Cyberbiosecurity: A New Field to Deal with Emerging Threats (pp. 265–278). Springer International Publishing. https://doi.org/10.1007/978-3-031-26034-6_14
  • Shaik, M. (2023). Impact of artificial intelligence on marketing. East Asian Journal of Multidisciplinary Research, 2(3), Article 3. https://doi.org/10.55927/eajmr.v2i3.3112
  • Smith, T., Stiller, B., Guszcza, J., & Davenport, T. (2019). Analytics and AI-driven enterprises thrive in the Age of With. Deloitte Insights.
  • Song, M., Xing, X., Duan, Y., Cohen, J., & Mou, J. (2022). Will artificial intelligence replace human customer service? The impact of communication quality and privacy risks on adoption intention. Journal of Retailing and Consumer Services, 66, 102900. https://doi.org/10.1016/j.jretconser.2021.102900
  • Stephens, E. (2023). The mechanical Turk: A short history of ‘artificial artificial intelligence.’ Cultural Studies, 37(1), 65–87. https://doi.org/10.1080/09502386.2022.2042580
  • Sterne, J. (2017). Artificial Intelligence for Marketing: Practical Applications. John Wiley & Sons. Surendro, K. (2019). Predictive analytics for predicting customer behavior. 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), 230–233.
  • Thandekkattu, S. G., & Kalaiarasi, M. (2022). Customer-centric e-commerce implementing artificial intelligence for better sales and service. Proceedings of Second International Conference on Advances in Computer Engineering and Communication Systems: ICACECS 2021, 141–152.
  • Thomas, N. T. (2016). An e-business chatbot using AIML and LSA. 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2740–2742. https://doi.org/10.1109/ICACCI.2016.7732476
  • Tiwari, R. (2023). The impact of AI and machine learning on job displacement and employment opportunities. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT, 07(01). https://doi.org/10.55041/IJSREM17506
  • Torous, J., Bucci, S., Bell, I. H., Kessing, L. V., Faurholt-Jepsen, M., Whelan, P., Carvalho, A. F., Keshavan, M., Linardon, J., & Firth, J. (2021). The growing field of digital psychiatry: Current evidence and the future of apps, social media, chatbots and virtual reality. World Psychiatry, 20(3), 318–335. https://doi.org/10.1002/wps.20883
  • Verma, S., Sharma, R., Deb, S., & Maitra, D. (2021). Artificial intelligence in marketing: Systematic review and future research direction. International Journal of Information Management Data Insights, 1(1), 100002. https://doi.org/10.1016/j.jjimei.2020.100002
  • Villegas-Ch, W., Amores-Falconi, R., & Coronel-Silva, E. (2023). Design proposal for a virtual shopping assistant for people with vision problems applying artificial intelligence techniques. Big Data and Cognitive Computing, 7(2), Article 2. https://doi.org/10.3390/bdcc7020096
  • Vlačić, B., Corbo, L., Costa e Silva, S., & Dabić, M. (2021). The evolving role of artificial intelligence in marketing: A review and research agenda. Journal of Business Research, 128, 187–203. https://doi.org/10.1016/j.jbusres.2021.01.055
  • Wang, C. (2022). Efficient customer segmentation in digital marketing using deep learning with swarm intelligence approach. Information Processing & Management, 59(6), 103085. https://doi.org/10.1016/j.ipm.2022.103085
  • Wu, C.-W., & Monfort, A. (2023). Role of artificial intelligence in marketing strategies and performance. Psychology & Marketing, 40(3), 484–496. https://doi.org/10.1002/mar.21737
  • Yau, K.-L. A., Saad, N. M., & Chong, Y.-W. (2021). Artificial intelligence marketing (AIM) for enhancing customer relationships. Applied Sciences, 11(18), Article 18. https://doi.org/10.3390/app11188562
  • Yeği̇n, T. (2020). The Place And Future of Artificial Intelligence In Marketing Strategies. EKEV Akademi Dergisi, 81, Article 81.
  • Zulaikha, S., Mohamed, H., Kurniawati, M., Rusgianto, S., & Rusmita, S. A. (2020). Customer predictive analytics using artificial intelligence. The Singapore Economic Review, 1–12. https://doi.org/10.1142/S0217590820480021
There are 93 citations in total.

Details

Primary Language English
Subjects Business Administration, Marketing (Other)
Journal Section Research Article
Authors

Hafize Nurgül Durmuş Şenyapar 0000-0003-0927-1643

Early Pub Date February 28, 2024
Publication Date February 29, 2024
Submission Date December 30, 2023
Acceptance Date February 18, 2024
Published in Issue Year 2024 Volume: 8 Issue: 15

Cite

APA Durmuş Şenyapar, H. N. (2024). The Future of Marketing: The Transformative Power of Artificial Intelligence. International Journal of Management and Administration, 8(15), 1-19. https://doi.org/10.29064/ijma.1412272

Dergide aşağıdaki alanların kapsamına giren nitelikli çalışmalar yayımlanabilir;

İşletme, İktisat, Çalışma Ekonomisi ve Endüstri İlişkileri, Maliye, Kamu Yönetimi ve Siyaset Bilimi, Ekonometri, Yönetim Bilişim Sistemleri, Eğitim Yönetimi, Sağlık Yönetimi, Turizm Yönetimi, Havacılık Yönetimi, Denizcilik İşletmeleri Yönetimi, Mühendislik ve Teknoloji Yönetimi, Enerji Yönetimi, Lojistik Yönetimi, Çevre Yönetimi, Medya ve İletişim Yönetimi, Afet Yönetimi, Multidisipliner Yönetim ve Ekonomi Çalışmaları.

 IJMA is licensed under a Creative Commons Attribution 4.0 International (CC BY-NC 4.0) License.