Research Article
BibTex RIS Cite

Experimental and Numerical Investigation of Roughness Structure in Wind Turbine Airfoil at Low Reynolds Number

Year 2024, , 26 - 36, 01.09.2024
https://doi.org/10.5541/ijot.1455513

Abstract

This paper experimentally and numerically investigates the effects of suction side surface roughness on the aerodynamic performances of the NACA 0015 turbine blade profile. Three different NACA 0015 turbine blade configurations, which are smooth (K0), single roughness (K1), and double roughness (K2), are considered. The experimental studies were conducted using the HM-170 GUNT open wind tunnel model. The aerodynamic characteristics of these three blade configurations are evaluated in terms of their lift coefficient (CL), drag coefficient (CD), and aerodynamic efficiency (CL/CD). The maximum CL (CL,max) for K0 was obtained at 25°, whereas the CL,max angles for the K1 and K2 roughness blade profiles were reduced to 22.5°, utilizing the rough surfaces on the suction side. The experimental analysis revealed that the K2 profile demonstrated a 21% and 19% enhancement in maximal CL over the K0 and K1 profiles, respectively. The highest CL/CD was observed with K1, except at low attack of angle (αoα), where the smooth blade profile resulted in slightly better performance. Experimental analysis showed peak CL/CD at αoα of 7.5° for K0, and 12.5° for both K1 and K2, with K1's optimal CL/CD being 2.85% and 8.5% higher than K0 and K2, respectively. Numerical analysis indicated that the CL/CD,avg for K1 was observed to be 11% and 8% higher than that of K0 across all αoα.

Thanks

We express our gratitude to Gazi University for the use of the wind tunnel facility at the Technology Faculty's Energy Systems Engineering Department, where the experimental part of this study was conducted.

References

  • A. Dağdeviren, E. Gedik, A. Keçebaş, H. K. Pazarlıoğlu, K. Arslan, A. I. Alsabery, "Effect of Al2O3–SiO2/Water Hybrid Nanofluid Filled in a Square Enclosure on the Natural Convective Heat Transfer Characteristics: A Numerical Study," Journal of Nanofluids, 11(5), 772-781, 2022, doi: 10.1166/jon.2022.1881.
  • H. E. Tanürün, İ. Ata, M. E. Canli, A. Acir, “ Farklı Açıklık Oranlarındaki NACA-0018 Rüzgâr Türbini Kanat Modeli Performansının Sayısal ve Deneysel İncelenmesi,” Politeknik Dergisi, 23(2), 31-381, 2020 doi:10.2339/politeknik.500043.
  • M. H. Mohamed, "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes," Energy, 47(1), 522-530, 2012, doi: 10.1016/j.energy.2012.08.044.
  • İ. Şahin, A. Acir, "Numerical and experimental investigations of lift and drag performances of NACA 0015 wind turbine airfoil," International Journal of Materials, Mechanics and Manufacturing, 3(1), 22-25, 2015.
  • N. M. Triet, N. N. Viet, P. M. Thang, "Aerodynamic analysis of aircraft wing," VNU Journal of Science: Mathematics-Physics, 31(2), 68-75, 2015.
  • R. I. Rubel, M. K. Uddin, M. Z. Islam, M. Rokunuzzaman, "Comparison of Aerodynamics Characteristics of NACA 0015 & NACA 4415," International Journal of Research – Granthaalayah, 5(11), 187-197, 2016, doi: 10.20944/preprints201610.0095.v1.
  • A. Ramadan, K. Yousef, M. Said, M. H. Mohamed, "Shape optimization and experimental validation of a drag vertical axis wind turbine," Energy, 151, 839-853, 2018, doi: 10.1016/j.energy.2018.03.117.
  • H. E. Tanürün, A. G. Akın, A. Acır, "Rüzgâr türbinlerinde kiriş yapısının performansa etkisinin sayısal olarak incelenmesi," Politeknik Dergisi, 24(3), 1219-1226, 2021. doi: 10.2339/politeknik.845804.
  • R. Çakıroğlu, H. E. Tanürün, A. Acır, F. Üçgül, S. Olkun, "Optimization of NACA 4412 augmented with a gurney flap by using grey relational analysis," Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(3), 167, 2023. doi: 10.1007/s40430-023-04089-x.
  • M. M. M. Saad, S. B. Mohd, M. F. Zulkafli, W. M. E. Shibani, "Numerical analysis for comparison of aerodynamic characteristics of six airfoils," AIP Conference Proceedings, 1831, 020004, 2017, doi: 10.1063/1.4981145.
  • V. Shukla, A. K. Kaviti, "Performance evaluation of profile modifications on straight-bladed vertical axis wind turbine by energy and Spalart Allmaras models," Energy, 126, 766-795, 2017, doi: 10.1016/j.energy.2017.03.071.
  • M. Karthick, S. M. Kumar, "Investigation of Aerodynamic Performances of NACA 0015 Wind Turbine Airfoil," International Journal of Engineering Research, 5(4), 327-331, 2016, doi: 10.17950/ijer/v5s4/425.
  • R. I. Rubel, M. K. Uddin, M. Z. Islam, M. D. Rokunuzzaman, "Numerical and experimental investigation of aerodynamics characteristics of NACA 0015 aerofoil," International Journal of Engineering Technologies, 2(4), 132-141, 2016, doi: 10.19072/ijet.280499.
  • A. Kabir, M. S. Chowdhury, M. J. Islam, M. Islam, "Numerical Assessment of the Backward Facing Step for NACA 0015 Airfoil using Computational Fluid Dynamics," 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), Bangladesh, May. 3-5, 2019, doi: 10.1109/ICASERT.2019.8934501.
  • L. W. Traub, "Aerodynamic impact of aspect ratio at low Reynolds number," Journal of Aircraft, 50(2), 626-634, 2013. doi: 10.2514/1.C031980.
  • M. Mizoguchi, Y. Kajikawa, H. Itoh, "Aerodynamic characteristics of low-aspect-ratio wings with various aspect ratios in low Reynolds number flows," Transactions of The Japan Society for Aeronautical and Space Sciences, 59(2), 56-63, 2016, doi: 10.2322/tjsass.59.56.
  • H. E. Tanürün, A. Acir, “Modifiye edilmiş NACA-0015 kanat yapısında tüberkül etkisinin sayısal analizi,” Politeknik Dergisi, 22(1), 185-195, 2019, doi: 10.2339/politeknik.391800.
  • M. T. Javaid, U. Sajjad, S. S. ul Hassan, S. Nasir, M. U. Shahid, A. Ali, S. Salamat, "Power enhancement of vertical axis wind turbine using optimum trapped vortex cavity," Energy, 278, 127808, 2023, doi: 10.1016/j.energy.2023.127808.
  • H. E. Tanürün, "Improvement of vertical axis wind turbine performance by using the optimized adaptive flap by the Taguchi method," Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 71-90, 2024, doi: 10.1080/15567036.2023.2279264.
  • I. Hashem, M. H. Mohamed, "Aerodynamic performance enhancements of H-rotor Darrieus wind turbine," Energy, 142, 531-545, 2018, doi: 10.1016/j.energy.2017.10.036.
  • H. E. Tanürün, A. Acır, "Investigation of the hydrogen production potential of the H-Darrieus turbines combined with various wind-lens," International Journal of Hydrogen Energy, 47(55), 23118-23138, 2022, doi: 10.1016/j.ijhydene.2022.04.196.
  • K. Malik, M. Aldheeb, W. Asrar, S. Erwin, "Effects of bio-inspired surface roughness on a swept back tapered NACA 4412 wing," Journal of Aerospace Technology and Management, 11, 1719, 2015, doi: 10.5028/jatm.v11.1021.
  • W. Chakroun, I. Al-Mesri, S. Al-Fahad, "Effect of surface roughness on the aerodynamic characteristics of a symmetrical airfoil," Wind Engineering, 28(5), 547-564, 2004, doi: 10.1260/0309524043028136.
  • F. Salazar and A. Barrientos, "Surface roughness measurement on a wing aircraft by speckle correlation," Sensors, 13(9), 11772-11781, 2013, doi: 10.3390/s130911772.
  • Q. Zhang, M. Goodro, P. M. Ligrani, R. Trindade, S. Sreekanth, "Influence of surface roughness on the aerodynamic losses of a turbine vane," ASME J. Turbomach, 128, 568–578, 2006, doi: 10.1115/1.2175163.
  • Y. Wang, H. Tong, H. Sima, J. Wang, J. Sun, D. Huang, "Experimental study on aerodynamic performance of deformable blade for vertical axis wind turbine," Energy, 181, 187-201, 2019, doi: 10.1016/j.energy.2019.03.181.
  • M. E. Abdel-Latief, K. Elsayed, M. Madbouli Abdelrahman, "Aerodynamic study of the corrugated airfoil at ultra-low Reynolds number," Advances in Mechanical Engineering, 11(10), 1-15, 2019, doi: 10.1177/1687814019884164.
  • J. T. Murphy and H. Hu, "An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications," Experiments in fluids, 49(2), 531-546, 2010, doi: 10.1007/s00348-010-0826-z.
  • M. Tamai, Z. Wang, G. Rajagopalan, H. Hu, G. He, "Aerodynamic performance of a corrugated dragonfly airfoil compared with smooth airfoils at low Reynolds numbers," 45th AIAA aerospace sciences meeting and exhibit, Jan. 8-11 2007, Reno, USA, doi: 10.2514/6.2007-483.
  • Q. Zhang and P. M. Ligrani, "Wake turbulence structure downstream of a cambered airfoil in transonic flow: effects of surface roughness and freestream turbulence intensity," International Journal of Rotating Machinery, 8, 1-12, 2006, doi: 10.1155/IJRM/2006/60234.
  • Y. Xia, O. Bilgen, M. I. Friswell, "The effect of corrugated skins on aerodynamic performance," Journal of Intelligent Material Systems and Structures, 25(7), 786-794, 2014, doi: 10.1177/1045389X14521874
  • Liu, Y., Zhang, K., Tian, W., Hu, H., "An experimental study to characterize the effects of initial ice roughness on the wind-driven water runback over an airfoil surface," International Journal of Multiphase Flow, 126, 103254, 2020, doi: 10.1016/j.ijmultiphaseflow.2020.103254
  • Sun, Z., Mao, Y., Fan, M., "Performance optimization and investigation of flow phenomena on tidal turbine blade airfoil considering cavitation and roughness," Applied Ocean Research, 106, 102463, 2021, doi: 10.1016/j.apor.2020.102463.
  • M. Wang, C. Yang, Z. Li, S. Zhao, Y. Zhang, X. Lu, "Effects of surface roughness on the aerodynamic performance of a high subsonic compressor airfoil at low Reynolds number," Chinese Journal of Aeronautics, 34(3), 71-81, 2021, doi: 10.1016/j.cja.2020.08.020.
  • M. Özkan, O. Erkan, "Control of a boundary layer over a wind turbine blade using distributed passive roughness," Renewable Energy, 184, 421-429, 2022, doi: 10.1016/j.renene.2021.11.082.
  • J. Kelly, C. Vogel, R. Willden, "Impact and mitigation of blade surface roughness effects on wind turbine performance," Wind Energy, 25(4), 660-677, 2022, doi: 10.1002/we.2691.
  • Y. D. Dwivedi, A. Wahab, A. D. Pallay, A. Shesham, "Effect of surface roughness on aerodynamic performance of the wing with NACA 4412 airfoil at Reynolds number 1.7× 105," Materials Today: Proceedings, 56, 468-476, 2022, doi: 10.1016/j.matpr.2022.02.153.
  • J. Ryi, W. Rhee, U. C. Hwang, J. S. Choi, "Blockage effect correction for a scaled wind turbine rotor by using wind tunnel test data," Renewable Energy, 79, 227-235, 2015, doi: 10.1016/j.renene.2014.11.057.
  • A. Tools, "NACA 4-digit airfoil generator," National Advisory Committee for Aeronautics, 2015. http://airfoiltools.com/airfoil/naca4digit (accessed July. 11, 2024).
  • J. Yao, W. Yuan, J. Xie, H. Zhou, M. Peng, Y. Sun, "Numerical simulation of aerodynamic performance for two dimensional wind turbine airfoils," Procedia Engineering, 31, 80-86, 2012, doi: 10.1016/j.proeng.2012.01.994.
  • S. J. Kline, F. A. McClintock, Describing uncertainties in single-sample experiments, Mechanical Engineering 75, 3–8, 1953.
  • J. Anderson, Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill Education, 1995.",
  • H. E. Tanürün, "Taguchi Yöntemiyle Sağlamlık Oranının Dikey Eksenli Rüzgâr Türbini Performansına Olan Etkisinin Sayısal Olarak İncelenmesi," Journal of Materials and Mechatronics: A, 4(2), 355-372, 2023, doi: 10.55546/jmm.1295748.
  • M. Tahani, N. Babayan, S. Mehrnia, M. Shadmehri, "A novel heuristic method for optimization of straight blade vertical axis wind turbine," Energy Conversion and Management, 127, 461-476, 2016, doi: 10.1016/j.enconman.2016.08.094.
  • H. F. Lam, H. Y. Peng, "Study of wake characteristics of a vertical axis wind turbine by two-and three-dimensional computational fluid dynamics simulations," Renewable Energy, 90, 386-398, 2016, doi: 10.1016/j.renene.2016.01.011.
  • R. H. Rogers, Fluid Mechanics. Tata McGraw Hill Education Private, 1978.",
  • M. H. Mohamed, A. M. Ali, A. A. Hafiz, "CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter," Engineering Science and Technology, an International Journal, 18(1), 1-13, 2015, doi: 10.1016/j.jestch.2014.08.002.
  • A. F. Kaya, H. E. Tanürün, A. Acır, "Numerical investigation of radius dependent solidity effect on H-type vertical axis wind turbines," Politeknik Dergisi, 25(3), 1007-1019, 2021, doi: 10.2339/politeknik.799767.

Düşük Reynolds Sayısında Rüzgar Türbini Kanadında Pürüzlülük Yapısının Deneysel ve Sayısal İncelemesi

Year 2024, , 26 - 36, 01.09.2024
https://doi.org/10.5541/ijot.1455513

Abstract

Bu makale, NACA 0015 türbin kanadı profilinin aerodinamik performansları üzerindeki emme tarafı yüzey pürüzlülüğünün etkilerini deneysel ve sayısal olarak araştırmaktadır. Düz (K0), tek pürüzlülük (K1) ve çift pürüzlülük (K2) olmak üzere üç farklı NACA 0015 türbin kanadı konfigürasyonu ele alınmıştır. Sayısal çalışmalar, k-epsilon türbülans modelini kullanarak ticari bir CFD paketi (ANSYS-Fluent) ile gerçekleştirilmiştir. Deneysel çalışmalar, HM-170 GUNT açık tip rüzgar tüneli modeli kullanılarak yürütülmüştür. Bu üç kanat konfigürasyonunun aerodinamik özellikleri, kaldırma katsayısı (CL), sürükleme katsayısı (CD) ve aerodinamik verimlilik (CL/CD) açısından değerlendirilmiştir. K0 için maksimum CL (CL,max) 25°'de elde edilirken, K1 ve K2 pürüzlülük kanat profilleri için CL,max açıları, emme tarafındaki pürüzlü yüzeyler kullanılarak 22,5°'ye düşürülmüştür. Deneysel analiz, K2 profilinin maksimal CL'de sırasıyla K0 ve K1 profillerine göre %21 ve %19 artış gösterdiğini ortaya koymuştur. En yüksek CL/CD, düşük αoα'da düz kanat profilinin biraz daha iyi performans sergilediği durumlar hariç K1 ile gözlemlenmiştir. Deneysel analiz, K0 için αoα'nın 7.5°'de ve hem K1 hem de K2 için 12.5°'de zirve CL/CD göstermiş, K1'in optimal CL/CD'si sırasıyla K0 ve K2'ye göre %2.85 ve %8.5 daha yüksek olmuştur. Sayısal analiz, K1'in CL/CD,avg'nin tüm αoα boyunca K0'a göre %11 ve K2'ye göre %8 daha yüksek olduğunu belirtmiştir. Ek olarak, bu profillerin basınç katsayısı (CP) 15° ve 22.5°'deki αoα için çizilmiş ve pürüzlülük yüzeylerinde CL üzerindeki olumlu etkisi gözlemlenmiştir.

Thanks

Bu çalışmanın deneysel kısmı, Gazi Üniversitesi Teknoloji Fakültesi Enerji Sistemleri Mühendisliği Bölümü'ndeki rüzgar tüneli tesisinde gerçekleştirilmiştir. Bu imkanı sağladıkları için Gazi Üniversitesi'ne teşekkür ederiz.

References

  • A. Dağdeviren, E. Gedik, A. Keçebaş, H. K. Pazarlıoğlu, K. Arslan, A. I. Alsabery, "Effect of Al2O3–SiO2/Water Hybrid Nanofluid Filled in a Square Enclosure on the Natural Convective Heat Transfer Characteristics: A Numerical Study," Journal of Nanofluids, 11(5), 772-781, 2022, doi: 10.1166/jon.2022.1881.
  • H. E. Tanürün, İ. Ata, M. E. Canli, A. Acir, “ Farklı Açıklık Oranlarındaki NACA-0018 Rüzgâr Türbini Kanat Modeli Performansının Sayısal ve Deneysel İncelenmesi,” Politeknik Dergisi, 23(2), 31-381, 2020 doi:10.2339/politeknik.500043.
  • M. H. Mohamed, "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes," Energy, 47(1), 522-530, 2012, doi: 10.1016/j.energy.2012.08.044.
  • İ. Şahin, A. Acir, "Numerical and experimental investigations of lift and drag performances of NACA 0015 wind turbine airfoil," International Journal of Materials, Mechanics and Manufacturing, 3(1), 22-25, 2015.
  • N. M. Triet, N. N. Viet, P. M. Thang, "Aerodynamic analysis of aircraft wing," VNU Journal of Science: Mathematics-Physics, 31(2), 68-75, 2015.
  • R. I. Rubel, M. K. Uddin, M. Z. Islam, M. Rokunuzzaman, "Comparison of Aerodynamics Characteristics of NACA 0015 & NACA 4415," International Journal of Research – Granthaalayah, 5(11), 187-197, 2016, doi: 10.20944/preprints201610.0095.v1.
  • A. Ramadan, K. Yousef, M. Said, M. H. Mohamed, "Shape optimization and experimental validation of a drag vertical axis wind turbine," Energy, 151, 839-853, 2018, doi: 10.1016/j.energy.2018.03.117.
  • H. E. Tanürün, A. G. Akın, A. Acır, "Rüzgâr türbinlerinde kiriş yapısının performansa etkisinin sayısal olarak incelenmesi," Politeknik Dergisi, 24(3), 1219-1226, 2021. doi: 10.2339/politeknik.845804.
  • R. Çakıroğlu, H. E. Tanürün, A. Acır, F. Üçgül, S. Olkun, "Optimization of NACA 4412 augmented with a gurney flap by using grey relational analysis," Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(3), 167, 2023. doi: 10.1007/s40430-023-04089-x.
  • M. M. M. Saad, S. B. Mohd, M. F. Zulkafli, W. M. E. Shibani, "Numerical analysis for comparison of aerodynamic characteristics of six airfoils," AIP Conference Proceedings, 1831, 020004, 2017, doi: 10.1063/1.4981145.
  • V. Shukla, A. K. Kaviti, "Performance evaluation of profile modifications on straight-bladed vertical axis wind turbine by energy and Spalart Allmaras models," Energy, 126, 766-795, 2017, doi: 10.1016/j.energy.2017.03.071.
  • M. Karthick, S. M. Kumar, "Investigation of Aerodynamic Performances of NACA 0015 Wind Turbine Airfoil," International Journal of Engineering Research, 5(4), 327-331, 2016, doi: 10.17950/ijer/v5s4/425.
  • R. I. Rubel, M. K. Uddin, M. Z. Islam, M. D. Rokunuzzaman, "Numerical and experimental investigation of aerodynamics characteristics of NACA 0015 aerofoil," International Journal of Engineering Technologies, 2(4), 132-141, 2016, doi: 10.19072/ijet.280499.
  • A. Kabir, M. S. Chowdhury, M. J. Islam, M. Islam, "Numerical Assessment of the Backward Facing Step for NACA 0015 Airfoil using Computational Fluid Dynamics," 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), Bangladesh, May. 3-5, 2019, doi: 10.1109/ICASERT.2019.8934501.
  • L. W. Traub, "Aerodynamic impact of aspect ratio at low Reynolds number," Journal of Aircraft, 50(2), 626-634, 2013. doi: 10.2514/1.C031980.
  • M. Mizoguchi, Y. Kajikawa, H. Itoh, "Aerodynamic characteristics of low-aspect-ratio wings with various aspect ratios in low Reynolds number flows," Transactions of The Japan Society for Aeronautical and Space Sciences, 59(2), 56-63, 2016, doi: 10.2322/tjsass.59.56.
  • H. E. Tanürün, A. Acir, “Modifiye edilmiş NACA-0015 kanat yapısında tüberkül etkisinin sayısal analizi,” Politeknik Dergisi, 22(1), 185-195, 2019, doi: 10.2339/politeknik.391800.
  • M. T. Javaid, U. Sajjad, S. S. ul Hassan, S. Nasir, M. U. Shahid, A. Ali, S. Salamat, "Power enhancement of vertical axis wind turbine using optimum trapped vortex cavity," Energy, 278, 127808, 2023, doi: 10.1016/j.energy.2023.127808.
  • H. E. Tanürün, "Improvement of vertical axis wind turbine performance by using the optimized adaptive flap by the Taguchi method," Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 71-90, 2024, doi: 10.1080/15567036.2023.2279264.
  • I. Hashem, M. H. Mohamed, "Aerodynamic performance enhancements of H-rotor Darrieus wind turbine," Energy, 142, 531-545, 2018, doi: 10.1016/j.energy.2017.10.036.
  • H. E. Tanürün, A. Acır, "Investigation of the hydrogen production potential of the H-Darrieus turbines combined with various wind-lens," International Journal of Hydrogen Energy, 47(55), 23118-23138, 2022, doi: 10.1016/j.ijhydene.2022.04.196.
  • K. Malik, M. Aldheeb, W. Asrar, S. Erwin, "Effects of bio-inspired surface roughness on a swept back tapered NACA 4412 wing," Journal of Aerospace Technology and Management, 11, 1719, 2015, doi: 10.5028/jatm.v11.1021.
  • W. Chakroun, I. Al-Mesri, S. Al-Fahad, "Effect of surface roughness on the aerodynamic characteristics of a symmetrical airfoil," Wind Engineering, 28(5), 547-564, 2004, doi: 10.1260/0309524043028136.
  • F. Salazar and A. Barrientos, "Surface roughness measurement on a wing aircraft by speckle correlation," Sensors, 13(9), 11772-11781, 2013, doi: 10.3390/s130911772.
  • Q. Zhang, M. Goodro, P. M. Ligrani, R. Trindade, S. Sreekanth, "Influence of surface roughness on the aerodynamic losses of a turbine vane," ASME J. Turbomach, 128, 568–578, 2006, doi: 10.1115/1.2175163.
  • Y. Wang, H. Tong, H. Sima, J. Wang, J. Sun, D. Huang, "Experimental study on aerodynamic performance of deformable blade for vertical axis wind turbine," Energy, 181, 187-201, 2019, doi: 10.1016/j.energy.2019.03.181.
  • M. E. Abdel-Latief, K. Elsayed, M. Madbouli Abdelrahman, "Aerodynamic study of the corrugated airfoil at ultra-low Reynolds number," Advances in Mechanical Engineering, 11(10), 1-15, 2019, doi: 10.1177/1687814019884164.
  • J. T. Murphy and H. Hu, "An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications," Experiments in fluids, 49(2), 531-546, 2010, doi: 10.1007/s00348-010-0826-z.
  • M. Tamai, Z. Wang, G. Rajagopalan, H. Hu, G. He, "Aerodynamic performance of a corrugated dragonfly airfoil compared with smooth airfoils at low Reynolds numbers," 45th AIAA aerospace sciences meeting and exhibit, Jan. 8-11 2007, Reno, USA, doi: 10.2514/6.2007-483.
  • Q. Zhang and P. M. Ligrani, "Wake turbulence structure downstream of a cambered airfoil in transonic flow: effects of surface roughness and freestream turbulence intensity," International Journal of Rotating Machinery, 8, 1-12, 2006, doi: 10.1155/IJRM/2006/60234.
  • Y. Xia, O. Bilgen, M. I. Friswell, "The effect of corrugated skins on aerodynamic performance," Journal of Intelligent Material Systems and Structures, 25(7), 786-794, 2014, doi: 10.1177/1045389X14521874
  • Liu, Y., Zhang, K., Tian, W., Hu, H., "An experimental study to characterize the effects of initial ice roughness on the wind-driven water runback over an airfoil surface," International Journal of Multiphase Flow, 126, 103254, 2020, doi: 10.1016/j.ijmultiphaseflow.2020.103254
  • Sun, Z., Mao, Y., Fan, M., "Performance optimization and investigation of flow phenomena on tidal turbine blade airfoil considering cavitation and roughness," Applied Ocean Research, 106, 102463, 2021, doi: 10.1016/j.apor.2020.102463.
  • M. Wang, C. Yang, Z. Li, S. Zhao, Y. Zhang, X. Lu, "Effects of surface roughness on the aerodynamic performance of a high subsonic compressor airfoil at low Reynolds number," Chinese Journal of Aeronautics, 34(3), 71-81, 2021, doi: 10.1016/j.cja.2020.08.020.
  • M. Özkan, O. Erkan, "Control of a boundary layer over a wind turbine blade using distributed passive roughness," Renewable Energy, 184, 421-429, 2022, doi: 10.1016/j.renene.2021.11.082.
  • J. Kelly, C. Vogel, R. Willden, "Impact and mitigation of blade surface roughness effects on wind turbine performance," Wind Energy, 25(4), 660-677, 2022, doi: 10.1002/we.2691.
  • Y. D. Dwivedi, A. Wahab, A. D. Pallay, A. Shesham, "Effect of surface roughness on aerodynamic performance of the wing with NACA 4412 airfoil at Reynolds number 1.7× 105," Materials Today: Proceedings, 56, 468-476, 2022, doi: 10.1016/j.matpr.2022.02.153.
  • J. Ryi, W. Rhee, U. C. Hwang, J. S. Choi, "Blockage effect correction for a scaled wind turbine rotor by using wind tunnel test data," Renewable Energy, 79, 227-235, 2015, doi: 10.1016/j.renene.2014.11.057.
  • A. Tools, "NACA 4-digit airfoil generator," National Advisory Committee for Aeronautics, 2015. http://airfoiltools.com/airfoil/naca4digit (accessed July. 11, 2024).
  • J. Yao, W. Yuan, J. Xie, H. Zhou, M. Peng, Y. Sun, "Numerical simulation of aerodynamic performance for two dimensional wind turbine airfoils," Procedia Engineering, 31, 80-86, 2012, doi: 10.1016/j.proeng.2012.01.994.
  • S. J. Kline, F. A. McClintock, Describing uncertainties in single-sample experiments, Mechanical Engineering 75, 3–8, 1953.
  • J. Anderson, Computational Fluid Dynamics: The Basics with Applications. McGraw-Hill Education, 1995.",
  • H. E. Tanürün, "Taguchi Yöntemiyle Sağlamlık Oranının Dikey Eksenli Rüzgâr Türbini Performansına Olan Etkisinin Sayısal Olarak İncelenmesi," Journal of Materials and Mechatronics: A, 4(2), 355-372, 2023, doi: 10.55546/jmm.1295748.
  • M. Tahani, N. Babayan, S. Mehrnia, M. Shadmehri, "A novel heuristic method for optimization of straight blade vertical axis wind turbine," Energy Conversion and Management, 127, 461-476, 2016, doi: 10.1016/j.enconman.2016.08.094.
  • H. F. Lam, H. Y. Peng, "Study of wake characteristics of a vertical axis wind turbine by two-and three-dimensional computational fluid dynamics simulations," Renewable Energy, 90, 386-398, 2016, doi: 10.1016/j.renene.2016.01.011.
  • R. H. Rogers, Fluid Mechanics. Tata McGraw Hill Education Private, 1978.",
  • M. H. Mohamed, A. M. Ali, A. A. Hafiz, "CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter," Engineering Science and Technology, an International Journal, 18(1), 1-13, 2015, doi: 10.1016/j.jestch.2014.08.002.
  • A. F. Kaya, H. E. Tanürün, A. Acır, "Numerical investigation of radius dependent solidity effect on H-type vertical axis wind turbines," Politeknik Dergisi, 25(3), 1007-1019, 2021, doi: 10.2339/politeknik.799767.
There are 48 citations in total.

Details

Primary Language English
Subjects Energy Systems Engineering (Other)
Journal Section Research Articles
Authors

Himmet Erdi Tanürün 0000-0001-7814-7043

Ahmet Giray Akın 0000-0003-4802-5613

Adem Acır 0000-0002-9856-3623

İzzet Şahin 0000-0003-2973-3024

Publication Date September 1, 2024
Submission Date March 21, 2024
Acceptance Date July 7, 2024
Published in Issue Year 2024

Cite

APA Tanürün, H. E., Akın, A. G., Acır, A., Şahin, İ. (2024). Experimental and Numerical Investigation of Roughness Structure in Wind Turbine Airfoil at Low Reynolds Number. International Journal of Thermodynamics, 27(3), 26-36. https://doi.org/10.5541/ijot.1455513
AMA Tanürün HE, Akın AG, Acır A, Şahin İ. Experimental and Numerical Investigation of Roughness Structure in Wind Turbine Airfoil at Low Reynolds Number. International Journal of Thermodynamics. September 2024;27(3):26-36. doi:10.5541/ijot.1455513
Chicago Tanürün, Himmet Erdi, Ahmet Giray Akın, Adem Acır, and İzzet Şahin. “Experimental and Numerical Investigation of Roughness Structure in Wind Turbine Airfoil at Low Reynolds Number”. International Journal of Thermodynamics 27, no. 3 (September 2024): 26-36. https://doi.org/10.5541/ijot.1455513.
EndNote Tanürün HE, Akın AG, Acır A, Şahin İ (September 1, 2024) Experimental and Numerical Investigation of Roughness Structure in Wind Turbine Airfoil at Low Reynolds Number. International Journal of Thermodynamics 27 3 26–36.
IEEE H. E. Tanürün, A. G. Akın, A. Acır, and İ. Şahin, “Experimental and Numerical Investigation of Roughness Structure in Wind Turbine Airfoil at Low Reynolds Number”, International Journal of Thermodynamics, vol. 27, no. 3, pp. 26–36, 2024, doi: 10.5541/ijot.1455513.
ISNAD Tanürün, Himmet Erdi et al. “Experimental and Numerical Investigation of Roughness Structure in Wind Turbine Airfoil at Low Reynolds Number”. International Journal of Thermodynamics 27/3 (September 2024), 26-36. https://doi.org/10.5541/ijot.1455513.
JAMA Tanürün HE, Akın AG, Acır A, Şahin İ. Experimental and Numerical Investigation of Roughness Structure in Wind Turbine Airfoil at Low Reynolds Number. International Journal of Thermodynamics. 2024;27:26–36.
MLA Tanürün, Himmet Erdi et al. “Experimental and Numerical Investigation of Roughness Structure in Wind Turbine Airfoil at Low Reynolds Number”. International Journal of Thermodynamics, vol. 27, no. 3, 2024, pp. 26-36, doi:10.5541/ijot.1455513.
Vancouver Tanürün HE, Akın AG, Acır A, Şahin İ. Experimental and Numerical Investigation of Roughness Structure in Wind Turbine Airfoil at Low Reynolds Number. International Journal of Thermodynamics. 2024;27(3):26-3.