Research Article
BibTex RIS Cite
Year 2020, , 224 - 233, 27.08.2020
https://doi.org/10.5541/ijot.711703

Abstract

References

  • [1] Kaplan I.G., Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials (Wiley: New York, 2006).
  • [2] Rowlinson, J.S. (2002) Cohesion: A Scientific History of Intermolecular Forces, Cambridge University Press, Cambridge.
  • [3] NIST Webbook: Thermophysical Properties of Fluid Systems. - 2019.
  • [4] Yarris L. Clusters: A New State of Matter. // - Berkeley LAB Publication Archive. - 1991. Available at: https://www2.lbl.gov/Science-Articles/Archive/clusters.html (accessed 22.12.2019).
  • [5] Gas‐Phase Synthesis of Nanoparticles. Ed. Y. Huttel / - Wiley Online Books. 2017. URL: https://onlinelibrary.wiley.com/doi/book/10.../97835276984...
  • [6] Huttel Y., 2017, Gas Aggregation Synthesis of Nanoparticles, Wiley-VCH. 416 p.
  • [7] Smirnov B.M. Cluster Processes in Gases and Plasmas / - Wiley-VCH. 2010.
  • [8] De Micheli S.M., Licenblat A.R. Ice Whiskers Grown at Subsaturated Atmospheres. J. Atmospheric Sciences, Vol. 24, 1967, 312-315.
  • [9] M. Türk. Particle Formation with Supercritical Fluids, Volume 6 in the Series: Supercritical Fluid Science and Technology, Editor – Erdogan Kiran, Elsevier, 2014.
  • [10] Acharya A., Nayak R. L., 2016, Alpha clustering study in even nuclei, Int. J. of Current Research, Vol. 8, Issue, 03, pp.27401-27406,
  • [11] Kusaka, I., and Oxtoby, D.W., 1999, “Identifying Physical Clusters in Vapor Phase Nucleation”, J. Chem. Phys. 110 (20), 5249.
  • [12] Harris, S.S., and Ford, I.J., 2003, “A Dynamical Definition of Quasibound Molecular Clusters”, J. Chem. Phys., 118 (20), 9216.
  • [13] Ford, I.J., 2004, “Statistical mechanics of nucleation: a review”, Proc. Instn. Mech. Engrs., J. Mechanical Engineering Science, 218 (C), 883.
  • [14] Sedunov, B., 2007, “Monomolecular fraction in real gases”, Proceedings of Joint European Thermodynamics Conference, JETC IX, 176-180. [15] Sedunov B. Monomer fraction in real gases. // Int. J. of Thermodynamics. - 2008. - Issue 11 (1). - pp. 1-9.
  • [16] Koudryavtsev, A.B., Jameson, R.F. and Linert, W. (2001) The Law of Mass Action, Berlin: Springer-Verlag.
  • [17] Sedunov B. Equilibrium molecular interactions in pure gases. // J. of Thermodynamics. Vol. 2012. - Article ID 859047. - 13 pages. DOI: 10.1155/2012/859047
  • [18] Sedunov B. Equilibrium Structure of Dense Gases. // Proc. of the JEEP-2013. - Nancy: MATEC Web of Conferences. - DOI:10.1051/matecconf/20130301002
  • [19] Aster R.C., Borchers B., and Thurber C. Parameter Estimation and Inverse Problems. - 2nd edn. - Elsevier. - 2012.
  • [20] Sedunov, B., New approaches to teaching the Thermal Physics of Fluids, ICCT, Tsukuba, Japan, 2010
  • [21] Bertrand Berche, Malte Henkel, Ralph Kenna. Critical Phenomena: 150 Years Since Cagniard de la Tour. J. of Physical Studies V. 13, No. 3 (2009) 3001 (4 p.)
  • [22] T. Andrews. The Bakerian Lecture.— On the Continuity of the Gaseous and Liquid States of Matter. 1869.
  • [23] T. Andrews, Phil. Trans. R. Soc. London 159, 575. 1869.
  • [24] T. Andrews, Phil. Trans. R. Soc. London 166, 421. 1876.
  • [25] Mayer, J.E. and Goeppert-Mayer, M. Statistical Mechanics, 2nd Ed. New York: Wiley & Sons. 1977.
  • [26] Mayer J.E., Contribution to Statistical Mechanics, J. Chem. Phys. 10 (1942) 629–643.
  • [27] Ford I.J. Virial/Fisher Models of Molecular Cluster Populations. J. Chem. Phys. 1997, 106 (23), 9734.
  • [28] Feynman, R., 1972, Statistical mechanics; A set of lectures, Benjamin, Inc., Massachusetts, pp. 115-147.
  • [29] Kittel, Ch., Thermal physics, 1969, John Wiley and Sons, Inc., New York.
  • [30] G.N. Lewis and M. Randall, Thermodynamics and the Free Energy of Chemical Substances, McGraw-Hill Book Company, New York, 1923.
  • [31] Tetrode, H., 1912, Ann. der Physik, 38, 434.
  • [32] Sackur, O., 1913, Ann. der Physik, 40, 67.
  • [33] Grimus W. On the 100th anniversary of the Sackur–Tetrode equation. arXiv:1112.3748v2 [physics.hist-ph] 23 Jan 2013.
  • [34] Wargaftik N.B. Handbook of Physical Properties of Liquids and Gases: Pure Substances and Mixtures. Springer-Verlag Berlin Heidelberg, 1975.
  • [35] Sedunov B. Discovering the Cluster World. - Saarbrucken, Germany: Lambert Academic Publisher. - 2015. - 102 p.
  • [36] Boris Sedunov. The Monomer Fraction Density Based Theory of Real Gases. JETC_book_of_abstracts. 2019, p. 109.
  • [37] Sedunov B. The Wonders of Molecular Interactions. - Saarbrucken, Germany: Lambert Academic Publisher. - 2016. - 98 p.
  • [38] Lennard-Jones, J. E. (1924), "On the Determination of Molecular Fields", Proc. R. Soc. Lond. A, 106 (738): 463–477.
  • [39] Boris Sedunov. Thermodynamics of the Pure Real Gas System. JETC_book_of_abstracts. 2019, p. 72.
  • [40] Sedunov B. The Analysis of the Equilibrium Cluster Structure in Supercritical Carbon Dioxide. // American J. of Analytical Chemistry. 2012. - Issue 3 (12A). - pp. 899-904. DOI: 10.4236/ajac.2012.312A119
  • [41] Sedunov B. Nanosized objects in equilibrium supercritical fluids. // Proc. of the JEEP-2013. - Nancy: MATEC Web of Conferences. - 3. - 01062. - 2013. DOI:10.1051/matecconf/20130301062

An Advanced Platform for Thermodynamics Education. Part one: Small Density Pure Real Gases

Year 2020, , 224 - 233, 27.08.2020
https://doi.org/10.5541/ijot.711703

Abstract

The paper presents an advanced platform for thermodynamics education - the equilibrium pure real gas system, which has been deeply investigated experimentally and theoretically by researchers from all over the World. But in spite of a huge amount of extra precise experimental data, the nature of real gases and clusters in them is still poorly understood. The clusters are considered now as a new state of matter. To study them is both challenging and educative. We use a wonderful feature of pure real gases: the chemical potential for all basic particles in a gas is universal for all clusters. It permits us to find the monomer fraction density Dm from an experimental pressure dependence of the total density. This variable has proven to be the key to properties of clusters and molecular interactions. The advanced platform is more informative for thermodynamics education than the widely used ideal gas model, which ignores molecular interactions. It provides a new vision of molecular interactions in clusters, the entropy and Joule-Thomson effect in pure real gases, gas-to-liquid transition in supercritical fluids. Moving step-by-step from ideal to denser gases students understand better the complex nature of condensation. Here we start from small density gases.

References

  • [1] Kaplan I.G., Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials (Wiley: New York, 2006).
  • [2] Rowlinson, J.S. (2002) Cohesion: A Scientific History of Intermolecular Forces, Cambridge University Press, Cambridge.
  • [3] NIST Webbook: Thermophysical Properties of Fluid Systems. - 2019.
  • [4] Yarris L. Clusters: A New State of Matter. // - Berkeley LAB Publication Archive. - 1991. Available at: https://www2.lbl.gov/Science-Articles/Archive/clusters.html (accessed 22.12.2019).
  • [5] Gas‐Phase Synthesis of Nanoparticles. Ed. Y. Huttel / - Wiley Online Books. 2017. URL: https://onlinelibrary.wiley.com/doi/book/10.../97835276984...
  • [6] Huttel Y., 2017, Gas Aggregation Synthesis of Nanoparticles, Wiley-VCH. 416 p.
  • [7] Smirnov B.M. Cluster Processes in Gases and Plasmas / - Wiley-VCH. 2010.
  • [8] De Micheli S.M., Licenblat A.R. Ice Whiskers Grown at Subsaturated Atmospheres. J. Atmospheric Sciences, Vol. 24, 1967, 312-315.
  • [9] M. Türk. Particle Formation with Supercritical Fluids, Volume 6 in the Series: Supercritical Fluid Science and Technology, Editor – Erdogan Kiran, Elsevier, 2014.
  • [10] Acharya A., Nayak R. L., 2016, Alpha clustering study in even nuclei, Int. J. of Current Research, Vol. 8, Issue, 03, pp.27401-27406,
  • [11] Kusaka, I., and Oxtoby, D.W., 1999, “Identifying Physical Clusters in Vapor Phase Nucleation”, J. Chem. Phys. 110 (20), 5249.
  • [12] Harris, S.S., and Ford, I.J., 2003, “A Dynamical Definition of Quasibound Molecular Clusters”, J. Chem. Phys., 118 (20), 9216.
  • [13] Ford, I.J., 2004, “Statistical mechanics of nucleation: a review”, Proc. Instn. Mech. Engrs., J. Mechanical Engineering Science, 218 (C), 883.
  • [14] Sedunov, B., 2007, “Monomolecular fraction in real gases”, Proceedings of Joint European Thermodynamics Conference, JETC IX, 176-180. [15] Sedunov B. Monomer fraction in real gases. // Int. J. of Thermodynamics. - 2008. - Issue 11 (1). - pp. 1-9.
  • [16] Koudryavtsev, A.B., Jameson, R.F. and Linert, W. (2001) The Law of Mass Action, Berlin: Springer-Verlag.
  • [17] Sedunov B. Equilibrium molecular interactions in pure gases. // J. of Thermodynamics. Vol. 2012. - Article ID 859047. - 13 pages. DOI: 10.1155/2012/859047
  • [18] Sedunov B. Equilibrium Structure of Dense Gases. // Proc. of the JEEP-2013. - Nancy: MATEC Web of Conferences. - DOI:10.1051/matecconf/20130301002
  • [19] Aster R.C., Borchers B., and Thurber C. Parameter Estimation and Inverse Problems. - 2nd edn. - Elsevier. - 2012.
  • [20] Sedunov, B., New approaches to teaching the Thermal Physics of Fluids, ICCT, Tsukuba, Japan, 2010
  • [21] Bertrand Berche, Malte Henkel, Ralph Kenna. Critical Phenomena: 150 Years Since Cagniard de la Tour. J. of Physical Studies V. 13, No. 3 (2009) 3001 (4 p.)
  • [22] T. Andrews. The Bakerian Lecture.— On the Continuity of the Gaseous and Liquid States of Matter. 1869.
  • [23] T. Andrews, Phil. Trans. R. Soc. London 159, 575. 1869.
  • [24] T. Andrews, Phil. Trans. R. Soc. London 166, 421. 1876.
  • [25] Mayer, J.E. and Goeppert-Mayer, M. Statistical Mechanics, 2nd Ed. New York: Wiley & Sons. 1977.
  • [26] Mayer J.E., Contribution to Statistical Mechanics, J. Chem. Phys. 10 (1942) 629–643.
  • [27] Ford I.J. Virial/Fisher Models of Molecular Cluster Populations. J. Chem. Phys. 1997, 106 (23), 9734.
  • [28] Feynman, R., 1972, Statistical mechanics; A set of lectures, Benjamin, Inc., Massachusetts, pp. 115-147.
  • [29] Kittel, Ch., Thermal physics, 1969, John Wiley and Sons, Inc., New York.
  • [30] G.N. Lewis and M. Randall, Thermodynamics and the Free Energy of Chemical Substances, McGraw-Hill Book Company, New York, 1923.
  • [31] Tetrode, H., 1912, Ann. der Physik, 38, 434.
  • [32] Sackur, O., 1913, Ann. der Physik, 40, 67.
  • [33] Grimus W. On the 100th anniversary of the Sackur–Tetrode equation. arXiv:1112.3748v2 [physics.hist-ph] 23 Jan 2013.
  • [34] Wargaftik N.B. Handbook of Physical Properties of Liquids and Gases: Pure Substances and Mixtures. Springer-Verlag Berlin Heidelberg, 1975.
  • [35] Sedunov B. Discovering the Cluster World. - Saarbrucken, Germany: Lambert Academic Publisher. - 2015. - 102 p.
  • [36] Boris Sedunov. The Monomer Fraction Density Based Theory of Real Gases. JETC_book_of_abstracts. 2019, p. 109.
  • [37] Sedunov B. The Wonders of Molecular Interactions. - Saarbrucken, Germany: Lambert Academic Publisher. - 2016. - 98 p.
  • [38] Lennard-Jones, J. E. (1924), "On the Determination of Molecular Fields", Proc. R. Soc. Lond. A, 106 (738): 463–477.
  • [39] Boris Sedunov. Thermodynamics of the Pure Real Gas System. JETC_book_of_abstracts. 2019, p. 72.
  • [40] Sedunov B. The Analysis of the Equilibrium Cluster Structure in Supercritical Carbon Dioxide. // American J. of Analytical Chemistry. 2012. - Issue 3 (12A). - pp. 899-904. DOI: 10.4236/ajac.2012.312A119
  • [41] Sedunov B. Nanosized objects in equilibrium supercritical fluids. // Proc. of the JEEP-2013. - Nancy: MATEC Web of Conferences. - 3. - 01062. - 2013. DOI:10.1051/matecconf/20130301062
There are 40 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Regular Original Research Article
Authors

Boris Sedunov 0000-0002-0300-773X

Publication Date August 27, 2020
Published in Issue Year 2020

Cite

APA Sedunov, B. (2020). An Advanced Platform for Thermodynamics Education. Part one: Small Density Pure Real Gases. International Journal of Thermodynamics, 23(3), 224-233. https://doi.org/10.5541/ijot.711703
AMA Sedunov B. An Advanced Platform for Thermodynamics Education. Part one: Small Density Pure Real Gases. International Journal of Thermodynamics. August 2020;23(3):224-233. doi:10.5541/ijot.711703
Chicago Sedunov, Boris. “An Advanced Platform for Thermodynamics Education. Part One: Small Density Pure Real Gases”. International Journal of Thermodynamics 23, no. 3 (August 2020): 224-33. https://doi.org/10.5541/ijot.711703.
EndNote Sedunov B (August 1, 2020) An Advanced Platform for Thermodynamics Education. Part one: Small Density Pure Real Gases. International Journal of Thermodynamics 23 3 224–233.
IEEE B. Sedunov, “An Advanced Platform for Thermodynamics Education. Part one: Small Density Pure Real Gases”, International Journal of Thermodynamics, vol. 23, no. 3, pp. 224–233, 2020, doi: 10.5541/ijot.711703.
ISNAD Sedunov, Boris. “An Advanced Platform for Thermodynamics Education. Part One: Small Density Pure Real Gases”. International Journal of Thermodynamics 23/3 (August 2020), 224-233. https://doi.org/10.5541/ijot.711703.
JAMA Sedunov B. An Advanced Platform for Thermodynamics Education. Part one: Small Density Pure Real Gases. International Journal of Thermodynamics. 2020;23:224–233.
MLA Sedunov, Boris. “An Advanced Platform for Thermodynamics Education. Part One: Small Density Pure Real Gases”. International Journal of Thermodynamics, vol. 23, no. 3, 2020, pp. 224-33, doi:10.5541/ijot.711703.
Vancouver Sedunov B. An Advanced Platform for Thermodynamics Education. Part one: Small Density Pure Real Gases. International Journal of Thermodynamics. 2020;23(3):224-33.