BibTex RIS Cite

Modelling of a solid oxide fuel cell for integrated coal gasification hybrid power plant simulation

Year 2015, , 95 - 109, 13.06.2015
https://doi.org/10.5541/ijot.5000071377

Abstract

Now and in the mid-term future, coal remains an important energy source for electricity generation for reasons of energy supply security and economics. The expectation for low CO2-emissions and high plant efficiencies make solid oxide fuel cells an essential part of numerous innovative power plant concepts. For that reason, simplified and flexible models for solid oxide fuel cells are needed, which can be implemented easily in complex power plant system simulations. A model for a tubular solid oxide fuel cell based on a semi-empirical approach has been developed. The created model is successfully validated with operating data of demonstration plants published in literature. A parametric study for the target application in a hybrid power plant with high temperature fuel cells of fuel gas composition, operating pressure and temperature, fuel utilization and electrical power density is presented. By means of these, the model of the fuel cell is qualified for implementation in hybrid power plants system models. Additionally, characteristic diagrams obtained by variation of the operating pressure and the fuel utilization are discussed. With the help of the diagrams, the electric and energetic performance of the SOFC over a wide range of these parameters is described by isolines for discrete values of the electrical efficiency and voltage of the fuel cell.

References

  • = 0.167) (A.14) Δ ∗= {10 bar +
  • 15 bar − 10 bar : 1 bar < ≤ 3 bar
  • 3 bar+5 bar − 3 bar( − 3 bar) − 1 bar: 3 bar < ≤ 5 bar
  • 5 bar+10 bar − 5 bar( − 5 bar) − 1 bar 10 bar− 5 bar( − 5 bar) −
  • : 5 bar < ≤ 10 bar 1 bar : > 10 bar with
  • 1 bar= −6.164 ∙ 10−9( V
  • 3 bar= −2.820 ∙ 10−9( V
  • 5 bar= −3.113 ∙ 10−9( V
  • 10 bar= −2.082 ∙ 10−9( V 2 2 A/m² ) + 0.8110 A/m² )− 3.989 ∙ 10−5( A/m² 2 A/m² )− 3.892 ∙ 10−5( A/m² ) + 0.8751 A/m² )− 4.295 ∙ 10−5( 2 2
  • 15 bar= −2.737 ∙ 10−9( V A/m²
  • )− 034 ∙ 10−5( A/m² ) + 0.9059 ∆ ℎ ( , = 0.167) = 4 [ln( ̅̅̅̅) 2 − ln (( ̅̅̅̅) 2 =0.167 )]
  • p = operating pressure [bar] ( ̅̅̅̅) 2 =0.167
  • mole fraction at the inlet and outlet of the stack Δ = Δ ∗+ Δ
  • ( ) + Δ ℎ ( ) (A.15) with Δ ∗= {
  • 800 °C+900 °C − 800 °C( − 800 °C) − 900 °C− 800 °C : ≤ 900 °C
  • 900 °C+1000 °C − 900 °C( − 900 °C) − : > 900 °C with
  • 800 °C= −2.204 ∙ 10−8( V A/m²
  • )− 314 ∙ 10−4( A/m² ) + 0.9039
  • 900 °C= −2.727 ∙ 10−9( V A/m²
  • )− 963 ∙ 10−5( A/m² ) + 0.8675 Δ ( ) = 2 ln ( ̅̅̅̅2 2 ̅̅̅̅̅̅ ) ( − ) Δ ℎ ( ) = 4 ln( 2 ̅̅̅̅) ( − )
  • Calculation of the current strength of the stack Istack: = , (A.16)
  • Calculation of the clean gas molar flow
  • ̇ , for the stack: ̇ , = ̇ , ∙ (A.17)
  • Determining whether the calculation has converged: ∙ = (1 ± 10−6) , ? Yes: Go to step 17 No: Back to step 7
  • Calculation of the actual electric power of the stack: , = ∙ (A.18) Nomenclature A RG eloss F Hu m
  • Mass flow [kg/s] N n P p p0 p
  • Average (partial) pressure [Pa] Q R S/C  U x  AU FU   ν
  • M. Aizawa, “Power Generation Characteristics of Solid
  • Oxide Fuel Cells Operated with Simulated Coal Gas” in
  • Proceedings of the 5th European Solid Oxide Fuel Cell
  • Forum, Luzern, 2002.
  • S. Benson, Fuel cells – use with coal and other solid fuels, CCC / IEA Coal Research, no. 47, London: IEA Coal Research, The Clean Coal Centre, 2001.
  • R. Henne, G. Schiller, N. H. Menzler, F.-J. Wetzel, H. Greiner, “Hochtemperatur-Brennstoffzellen – von der Komponentenentwicklung zum System”, Proceedings of des Sonnenenergie, Berlin, 2004. Forschungsverbunds
  • analysis of a tubular SOFC, Int. J. Energy Res., doi: 10.1002/er.1238.
  • R. Bove, S. Ubertini, Modeling solid oxide fuel cell operation: Approaches, techniques and results, J. Power Sources, doi: 10.1016/j.jpowsour.2005.11.045.
  • M. J. Carl, SOFC Modeling for the Simulation of Residential Cogeneration Systems (MSc Thesis), University of Victoria, 2008.
  • M. Calì, M. G. L. Santarelli, P. Leone, Design of experiments for fitting regression models on the tubular SOFC CHP100kWe: Screening test, response surface analysis and optimization, Int. J. Hydrogen Energy, doi: 10.1016/j.ijhydene.2006.05.021.
  • P. Costamagna, L. Magistri, A. F. Massardo, Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine, J. Power Sources, PII: S0378-7753(00)00668-6.
  • A. Lazzaretto, A. Toffolo, F. Zanon, Parameter Setting for a Tubular SOFC Simulation Model, Trans. ASME, J. Energy Resour. Technol., doi:10.1115/1.1653752.
  • P. Lisbona, L. M. Romeo, Enhanced coal gasification heated by unmixed combustion integrated with an hybrid system of SOFC/GT, Int. J. of Hydrogen Energy, doi:10.1016/j.ijhydene.2008.06.031.
  • S. Campanari, Thermodynamic model and parametric analysis of a tubular SOFC module, J. Power Sources, PII:S0378-7753(00)00494-8.
  • D. Cocco, V. Tola, Comparative Performance Analysis of Internal and External Reforming of Methanol in SOFC-MGT Hybrid Power Plants, Trans. ASME, J. Eng. Gas Turbines Power, doi:10.1115/1.2364009.
  • V. Hacker, W. Sanz, M. Monsberger, H. Jericha, “High efficient SOFC/GT cycle”, Proceedings of the 15th World Hydrogen Energy Conference, Yokohama, Japan, 2004.
  • W. Zhang, E. Croiset, P. L. Douglas, M. W. Fowler, E. Entchev, Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models, Energy Convers. doi:10.1016/j.enconman.2004.03.002. Manage.,
  • F. Müller, J. Brouwer, F. Jabbari, S. Samuelsen, Dynamic Simulation of an Integrated Solid Oxide Fuel Cell System Including Current-Based Fuel Flow Control, Trans. ASME, J. Fuel Cell Sci. Technol., doi:10.1115/1.2174063.
  • C. Wang, M. H. Nehrir, A Physically Based Dynamic Model for Solid Oxide Fuel Cells, IEEE Trans. Energy Conver., doi:10.1109/TEC.2007.895468.
  • P. Costamagna, E. Arato, P. L. Antonucci, V. Antonucci, Chem. Eng. Sci. 51 (1996) 3013–3018.
  • R. Kandepu, L. Imsland, B. Foss, C. Stiller, B. Thorud, O. Bolland, Modeling and control of a SOFC-GT-based autonomous doi:10.1016/j.energy.2006.07.034. system, Energy,
  • F. Standaert, Analytical Fuel Cell Modelling and Exergy Analysis of Fuel Cells (PhD Thesis), Technische Universiteit Delft, 1998.
  • Piroonlerkgul, Determination of the boundary of carbon
  • formation for dry reforming of methane in a solid oxide fuel
  • doi:1016/j.jpowsour.2005.12.010. Power Sources,
  • W. Sangtongkitcharoen, S. Assabumrungrat, V. Laosiripojana,
  • Comparison of carbon formation boundary in different
  • modes of solid oxide fuel cells fueled by methane, J.
  • Power Sources, doi:10.1016/j.jpowsour.2004.10.009.
  • Z. Zeng, K. Natesan, Corrosion of metallic interconnects for SOFC in fuel gases, Solid State Ionics, doi:10.1016/j.ssi.2003.11.026.
  • I. Barin, F. Sauert, E. Schultze-Rhonhof, W. S. Sheng, Thermochemical Data of Pure Substances: Part I: Ag- Kr, 2nd Ed., Weinheim: VCH, 1993.
  • S. Veyo, “Westinghouse Fuel Cell Combined Cycle Systems”, Proceedings of Fuel Cells ’96 Review Meeting, Morgantown, 1996.
  • S. Veyo, W. Lundberg, “Solid Oxide Fuel Cell Power System Cycles”, Proceedings of International Gas Turbine & Aeroengine Congress & Exhibition, Indianapolis, 1999.
  • M. Krumbeck, C. Huster, H. Mertikat, C. Jansen, “Betriebserfahrungen Brennstoffzellen-Systemen”, Stationäre Brennstoffzellen, Heilbronn, 2003. of Proceedings the
  • S. Campanari, P. Iora, P., Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell doi:10.1016/j.jpowsour.2004.01.043. J. geometry, Power Sources,
  • S. Campanari, Full Load and Part-Load Performance Prediction for Integrated SOFC and Microturbine Systems, Trans. ASME, J. Eng. Gas Turbines Power, doi: S0742-4795(00)01702-6.
  • P. E. Campbell, J. T. McMullan, B. C. Williams, Concept for a competitive coal fired integrated gasification combined cycle power plant, Fuel, PII: S0016-2361(99)00228-8
  • P. Leone, M. G. Santarelli, M. Calí, Model and Simulation of a SOFC CHP Plant Fuelled with Hydrogen, ECS Transactions, doi:10.1149/1.2729035.
  • A. Weber, B. Sauer, A. C. Müller, D. Herbstritt, E. Ivers-Tiffée, Oxidation of H2, CO and methane in SOFCs withNi/YSZ-cermet anodes, Solid State Ionics, PII: S0167-2738(02)00359-4
  • K. Sasaki, Y. Hori, R. Kikuchi, K. Eguchi, A. Ueno, H. Takeuchi, M. Aizawa, K. Tsujimoto, H. Tajiri, H. Nishikawa, Y. Uchidad, Current-Voltage Characteristics and Impedance Analysis of Solid Oxide Fuel Cells for Mixed H2 and CO Gases, J. Electrochem. Soc., doi:10.1149/1.1435357.
  • K. D. Panopoulos, L. E. Fryda, J. Karl, S. Poulou, E. Kakaras, High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification, Part I: Modelling and feasibility study, J. Power Sources, doi:10.1016/j.jpowsour.2005.12.024.
Year 2015, , 95 - 109, 13.06.2015
https://doi.org/10.5541/ijot.5000071377

Abstract

References

  • = 0.167) (A.14) Δ ∗= {10 bar +
  • 15 bar − 10 bar : 1 bar < ≤ 3 bar
  • 3 bar+5 bar − 3 bar( − 3 bar) − 1 bar: 3 bar < ≤ 5 bar
  • 5 bar+10 bar − 5 bar( − 5 bar) − 1 bar 10 bar− 5 bar( − 5 bar) −
  • : 5 bar < ≤ 10 bar 1 bar : > 10 bar with
  • 1 bar= −6.164 ∙ 10−9( V
  • 3 bar= −2.820 ∙ 10−9( V
  • 5 bar= −3.113 ∙ 10−9( V
  • 10 bar= −2.082 ∙ 10−9( V 2 2 A/m² ) + 0.8110 A/m² )− 3.989 ∙ 10−5( A/m² 2 A/m² )− 3.892 ∙ 10−5( A/m² ) + 0.8751 A/m² )− 4.295 ∙ 10−5( 2 2
  • 15 bar= −2.737 ∙ 10−9( V A/m²
  • )− 034 ∙ 10−5( A/m² ) + 0.9059 ∆ ℎ ( , = 0.167) = 4 [ln( ̅̅̅̅) 2 − ln (( ̅̅̅̅) 2 =0.167 )]
  • p = operating pressure [bar] ( ̅̅̅̅) 2 =0.167
  • mole fraction at the inlet and outlet of the stack Δ = Δ ∗+ Δ
  • ( ) + Δ ℎ ( ) (A.15) with Δ ∗= {
  • 800 °C+900 °C − 800 °C( − 800 °C) − 900 °C− 800 °C : ≤ 900 °C
  • 900 °C+1000 °C − 900 °C( − 900 °C) − : > 900 °C with
  • 800 °C= −2.204 ∙ 10−8( V A/m²
  • )− 314 ∙ 10−4( A/m² ) + 0.9039
  • 900 °C= −2.727 ∙ 10−9( V A/m²
  • )− 963 ∙ 10−5( A/m² ) + 0.8675 Δ ( ) = 2 ln ( ̅̅̅̅2 2 ̅̅̅̅̅̅ ) ( − ) Δ ℎ ( ) = 4 ln( 2 ̅̅̅̅) ( − )
  • Calculation of the current strength of the stack Istack: = , (A.16)
  • Calculation of the clean gas molar flow
  • ̇ , for the stack: ̇ , = ̇ , ∙ (A.17)
  • Determining whether the calculation has converged: ∙ = (1 ± 10−6) , ? Yes: Go to step 17 No: Back to step 7
  • Calculation of the actual electric power of the stack: , = ∙ (A.18) Nomenclature A RG eloss F Hu m
  • Mass flow [kg/s] N n P p p0 p
  • Average (partial) pressure [Pa] Q R S/C  U x  AU FU   ν
  • M. Aizawa, “Power Generation Characteristics of Solid
  • Oxide Fuel Cells Operated with Simulated Coal Gas” in
  • Proceedings of the 5th European Solid Oxide Fuel Cell
  • Forum, Luzern, 2002.
  • S. Benson, Fuel cells – use with coal and other solid fuels, CCC / IEA Coal Research, no. 47, London: IEA Coal Research, The Clean Coal Centre, 2001.
  • R. Henne, G. Schiller, N. H. Menzler, F.-J. Wetzel, H. Greiner, “Hochtemperatur-Brennstoffzellen – von der Komponentenentwicklung zum System”, Proceedings of des Sonnenenergie, Berlin, 2004. Forschungsverbunds
  • analysis of a tubular SOFC, Int. J. Energy Res., doi: 10.1002/er.1238.
  • R. Bove, S. Ubertini, Modeling solid oxide fuel cell operation: Approaches, techniques and results, J. Power Sources, doi: 10.1016/j.jpowsour.2005.11.045.
  • M. J. Carl, SOFC Modeling for the Simulation of Residential Cogeneration Systems (MSc Thesis), University of Victoria, 2008.
  • M. Calì, M. G. L. Santarelli, P. Leone, Design of experiments for fitting regression models on the tubular SOFC CHP100kWe: Screening test, response surface analysis and optimization, Int. J. Hydrogen Energy, doi: 10.1016/j.ijhydene.2006.05.021.
  • P. Costamagna, L. Magistri, A. F. Massardo, Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine, J. Power Sources, PII: S0378-7753(00)00668-6.
  • A. Lazzaretto, A. Toffolo, F. Zanon, Parameter Setting for a Tubular SOFC Simulation Model, Trans. ASME, J. Energy Resour. Technol., doi:10.1115/1.1653752.
  • P. Lisbona, L. M. Romeo, Enhanced coal gasification heated by unmixed combustion integrated with an hybrid system of SOFC/GT, Int. J. of Hydrogen Energy, doi:10.1016/j.ijhydene.2008.06.031.
  • S. Campanari, Thermodynamic model and parametric analysis of a tubular SOFC module, J. Power Sources, PII:S0378-7753(00)00494-8.
  • D. Cocco, V. Tola, Comparative Performance Analysis of Internal and External Reforming of Methanol in SOFC-MGT Hybrid Power Plants, Trans. ASME, J. Eng. Gas Turbines Power, doi:10.1115/1.2364009.
  • V. Hacker, W. Sanz, M. Monsberger, H. Jericha, “High efficient SOFC/GT cycle”, Proceedings of the 15th World Hydrogen Energy Conference, Yokohama, Japan, 2004.
  • W. Zhang, E. Croiset, P. L. Douglas, M. W. Fowler, E. Entchev, Simulation of a tubular solid oxide fuel cell stack using AspenPlusTM unit operation models, Energy Convers. doi:10.1016/j.enconman.2004.03.002. Manage.,
  • F. Müller, J. Brouwer, F. Jabbari, S. Samuelsen, Dynamic Simulation of an Integrated Solid Oxide Fuel Cell System Including Current-Based Fuel Flow Control, Trans. ASME, J. Fuel Cell Sci. Technol., doi:10.1115/1.2174063.
  • C. Wang, M. H. Nehrir, A Physically Based Dynamic Model for Solid Oxide Fuel Cells, IEEE Trans. Energy Conver., doi:10.1109/TEC.2007.895468.
  • P. Costamagna, E. Arato, P. L. Antonucci, V. Antonucci, Chem. Eng. Sci. 51 (1996) 3013–3018.
  • R. Kandepu, L. Imsland, B. Foss, C. Stiller, B. Thorud, O. Bolland, Modeling and control of a SOFC-GT-based autonomous doi:10.1016/j.energy.2006.07.034. system, Energy,
  • F. Standaert, Analytical Fuel Cell Modelling and Exergy Analysis of Fuel Cells (PhD Thesis), Technische Universiteit Delft, 1998.
  • Piroonlerkgul, Determination of the boundary of carbon
  • formation for dry reforming of methane in a solid oxide fuel
  • doi:1016/j.jpowsour.2005.12.010. Power Sources,
  • W. Sangtongkitcharoen, S. Assabumrungrat, V. Laosiripojana,
  • Comparison of carbon formation boundary in different
  • modes of solid oxide fuel cells fueled by methane, J.
  • Power Sources, doi:10.1016/j.jpowsour.2004.10.009.
  • Z. Zeng, K. Natesan, Corrosion of metallic interconnects for SOFC in fuel gases, Solid State Ionics, doi:10.1016/j.ssi.2003.11.026.
  • I. Barin, F. Sauert, E. Schultze-Rhonhof, W. S. Sheng, Thermochemical Data of Pure Substances: Part I: Ag- Kr, 2nd Ed., Weinheim: VCH, 1993.
  • S. Veyo, “Westinghouse Fuel Cell Combined Cycle Systems”, Proceedings of Fuel Cells ’96 Review Meeting, Morgantown, 1996.
  • S. Veyo, W. Lundberg, “Solid Oxide Fuel Cell Power System Cycles”, Proceedings of International Gas Turbine & Aeroengine Congress & Exhibition, Indianapolis, 1999.
  • M. Krumbeck, C. Huster, H. Mertikat, C. Jansen, “Betriebserfahrungen Brennstoffzellen-Systemen”, Stationäre Brennstoffzellen, Heilbronn, 2003. of Proceedings the
  • S. Campanari, P. Iora, P., Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell doi:10.1016/j.jpowsour.2004.01.043. J. geometry, Power Sources,
  • S. Campanari, Full Load and Part-Load Performance Prediction for Integrated SOFC and Microturbine Systems, Trans. ASME, J. Eng. Gas Turbines Power, doi: S0742-4795(00)01702-6.
  • P. E. Campbell, J. T. McMullan, B. C. Williams, Concept for a competitive coal fired integrated gasification combined cycle power plant, Fuel, PII: S0016-2361(99)00228-8
  • P. Leone, M. G. Santarelli, M. Calí, Model and Simulation of a SOFC CHP Plant Fuelled with Hydrogen, ECS Transactions, doi:10.1149/1.2729035.
  • A. Weber, B. Sauer, A. C. Müller, D. Herbstritt, E. Ivers-Tiffée, Oxidation of H2, CO and methane in SOFCs withNi/YSZ-cermet anodes, Solid State Ionics, PII: S0167-2738(02)00359-4
  • K. Sasaki, Y. Hori, R. Kikuchi, K. Eguchi, A. Ueno, H. Takeuchi, M. Aizawa, K. Tsujimoto, H. Tajiri, H. Nishikawa, Y. Uchidad, Current-Voltage Characteristics and Impedance Analysis of Solid Oxide Fuel Cells for Mixed H2 and CO Gases, J. Electrochem. Soc., doi:10.1149/1.1435357.
  • K. D. Panopoulos, L. E. Fryda, J. Karl, S. Poulou, E. Kakaras, High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification, Part I: Modelling and feasibility study, J. Power Sources, doi:10.1016/j.jpowsour.2005.12.024.
There are 68 citations in total.

Details

Primary Language English
Journal Section Regular Original Research Article
Authors

Michael Krüger

Publication Date June 13, 2015
Published in Issue Year 2015

Cite

APA Krüger, M. (2015). Modelling of a solid oxide fuel cell for integrated coal gasification hybrid power plant simulation. International Journal of Thermodynamics, 18(2), 95-109. https://doi.org/10.5541/ijot.5000071377
AMA Krüger M. Modelling of a solid oxide fuel cell for integrated coal gasification hybrid power plant simulation. International Journal of Thermodynamics. June 2015;18(2):95-109. doi:10.5541/ijot.5000071377
Chicago Krüger, Michael. “Modelling of a Solid Oxide Fuel Cell for Integrated Coal Gasification Hybrid Power Plant Simulation”. International Journal of Thermodynamics 18, no. 2 (June 2015): 95-109. https://doi.org/10.5541/ijot.5000071377.
EndNote Krüger M (June 1, 2015) Modelling of a solid oxide fuel cell for integrated coal gasification hybrid power plant simulation. International Journal of Thermodynamics 18 2 95–109.
IEEE M. Krüger, “Modelling of a solid oxide fuel cell for integrated coal gasification hybrid power plant simulation”, International Journal of Thermodynamics, vol. 18, no. 2, pp. 95–109, 2015, doi: 10.5541/ijot.5000071377.
ISNAD Krüger, Michael. “Modelling of a Solid Oxide Fuel Cell for Integrated Coal Gasification Hybrid Power Plant Simulation”. International Journal of Thermodynamics 18/2 (June 2015), 95-109. https://doi.org/10.5541/ijot.5000071377.
JAMA Krüger M. Modelling of a solid oxide fuel cell for integrated coal gasification hybrid power plant simulation. International Journal of Thermodynamics. 2015;18:95–109.
MLA Krüger, Michael. “Modelling of a Solid Oxide Fuel Cell for Integrated Coal Gasification Hybrid Power Plant Simulation”. International Journal of Thermodynamics, vol. 18, no. 2, 2015, pp. 95-109, doi:10.5541/ijot.5000071377.
Vancouver Krüger M. Modelling of a solid oxide fuel cell for integrated coal gasification hybrid power plant simulation. International Journal of Thermodynamics. 2015;18(2):95-109.