Research Article
BibTex RIS Cite

Thermal Pyranometer Using the Open Hardware Arduino Platform

Year 2018, Volume: 21 Issue: 1, 1 - 5, 01.03.2018
https://doi.org/10.5541/ijot.5000209000

Abstract



Thermal Pyranometers are very important
devices for evaluating the intensity of solar radiation under different
climatic conditions. These devices utilize thermal radiation for comparison and
determination of their efficiency. Because of this wide use associated with the
development of new technologies, a simple and low-cost version of thermal
pyranometer has been studied, designed and manufactured. A blackened aluminum
disk is used as a hot junction, and the cold junction is exposed to ambient
air. The two terminals are connected to a digital amplifier with output signal
directed to an Arduino board. A device calibration was performed by comparing
the results with a commercial photodiode sensor. Statistical analysis of the
calibration data considering a 99% confidence level leads to an estimated
standard error of 20.8 W/m². An analysis of its response time also estimated
from a dynamic model. This model uses a numerical solution of the energy
balance on heat exchange between the aluminum disc and the environment. The
instrument response time based on the average of the estimates obtained from
the dynamic model is about 1.5 minutes. Based on these studies it was concluded
that the characteristics of the sensor are adequate for most solar energy tests
and the final cost of US $ 60.00 is much lower than the large majority of such
commercial devices.




References

  • [1] I. Zanesco and A. Krezinger, “On the threshold of the accuracy of using silicon solar cells to measure global solar irradiance,” in 11th Photovoltaic energy conference, Montreux Swizerland, Montreux - Suíça, 1992.[2] S. Awasthi, A. Dubey, J. M. Kellar, and O. Mor, “Design and simulation of eletronic instruments for solar energy measurement system,” Int. J. Sci. & Eng. Res., 3, 1, Jan-2012.[3] H. Vera Luiz, A. J. Busso, and F. Benitez, “Piranómetro fotovoltaico con sistem autónomo de adquisición de datos,” Avances en Energías Renovables y Medio Ambiente, 9, 2005.[4] I. Zanesco, “Analise e Construçao de um Piranômetro Fotovoltaico,” Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul, Porto Alegre, 1991.[5] M. A. Martínez, J. M. Andújar, and J. M. Enrique, “A new inexpensive pyranometer for the visible spectral range,” Sensors, 9, 4615–4634, 2009.[6] D. W. Medugu, F. W. Burari, and A. A. Abdulazeez, “Construction of a reliable model pyranometer for irradiance measurements,” African Journal of Biotechnology, 9, 1719–1725, 2010.[7] ISO 9847, Solar Energy — Calibration of field pyranometer by comparison to a reference pyranometer. 2013.[8] ISO 9060, Standard & Pyranometer Measurement Accuracy. 2012.[9] W. A. Vilela, “Estudo, desenvolvimento e caracterização de radiômetros para medição da raciação solar,” Tese de Doutorado, Instituto Nacional de Pesquisas Espaciais - INPE, São José dos Campos - SP, 2010.[10] WMM, “Instruments and observing methodos - Report No 98.” World Meteorological Organization, 2009.[11] M. et al Krazenerg, “Rastreabilidade de radiômetros para medida da energia solar,” in Meteorologia 2003 - Meteorologia para a vida, Recife - PE, 2006.[12] M. A. M. Bohórquez, J. M. E. Gómez, E. D. Aranda, M. J. V. Vázquez, and J. M. A. Márquez, “Sistema de instrumentación de bajo coste para la medición de irradiancia en el rango espectral visible,” in XXXII Jornadas de Automática, Sevilla - Espanha, 1, 2011. 1.[13] S. N. Nwankowo, M. N. Nnabuchi, and J. E. Ekpe, “Construction and characterization of a pyranometer using locally avaliable materials for global solar radiation measurement,” Asian Transactions on Basic and Applied Sciences, 2, 2012.[14] J. L. Souza and J. F. Escobedo, “Construção de um saldo radiômetro com termopilha de filme fino e avaliação de sua performance,” Revista Brasileira de Meteorologia, 10, 29–36, 1995.[15] J. F. Escobedo, V. A. Frisina, R. P. Ricieri, and A. P. Oliveira, “Radiômetros solares com termopilhas de filmes finos - I Descrição e custos,” Revista Brasileira de Aplicações de Vácuo, 16,, 1997.[16] J. M. Gomes, P. M. Ferreira, and A. E. Ruano, “Implementation of an intelligent sensor for measurement and prediction of solar radiation and atmospheric temperature,” in Sensors Journal, IEEE, Floriana - Malta, 2011, 1–6.[17] E. Avallone, “Avaliação da Eficiência Térmica de um Coletor Solar Tipo Tubo Evacuado Modificado,” Master Thesis, Universidade Estadual Paulista - Júlio de Mesquita Filho, Campus de Bauru, 2013.[18] J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Process, 4a., vol. 1. USA: John Wiley & Sons, 2013.[19] S. A. Kalogirou, “Solar thermal collectors and applications,” Progress in Energy and Combustion Science, 30, 231–295, 2004.[20] S. A. Kalogirou, Solar Energy Engineering, 1a., vol. 1. United States of America: British Library Cataloguing-in-Publication, 2009.[21] P. Berdahl and M. Martin, “Emissivity of clear skies,” Solar Energy, vol. 32, no. 5, p. 663, 1984.[22] K. G. T. Hollands, T. E. Unny, G. D. Raitby, and L. Konieck, “Free convection heat transfer across inclined air layers,” Trans ASME J. Heat Transfer, 98, 1976.[23] F. P. Incropera, D. P. Dewit, T. I. Bergman, and A. S. Lavine, Fundamentos de transferência de calor e massa, 6th ed., vol. 1, 1 vols. Rio de Janeiro: LTC - Livros técnicos e científicos Editora Ltda, 2008.[24] V. L. Scalon and S. D. R. Oliveira, “Theoretical analysis of a flat pyranometer,” presented at the VII SiAT - Simpósio de Análise Térmica, Universidade Estadual Paulista “Júlio de Mesquita Filho,” 4, 2015.
Year 2018, Volume: 21 Issue: 1, 1 - 5, 01.03.2018
https://doi.org/10.5541/ijot.5000209000

Abstract

References

  • [1] I. Zanesco and A. Krezinger, “On the threshold of the accuracy of using silicon solar cells to measure global solar irradiance,” in 11th Photovoltaic energy conference, Montreux Swizerland, Montreux - Suíça, 1992.[2] S. Awasthi, A. Dubey, J. M. Kellar, and O. Mor, “Design and simulation of eletronic instruments for solar energy measurement system,” Int. J. Sci. & Eng. Res., 3, 1, Jan-2012.[3] H. Vera Luiz, A. J. Busso, and F. Benitez, “Piranómetro fotovoltaico con sistem autónomo de adquisición de datos,” Avances en Energías Renovables y Medio Ambiente, 9, 2005.[4] I. Zanesco, “Analise e Construçao de um Piranômetro Fotovoltaico,” Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul, Porto Alegre, 1991.[5] M. A. Martínez, J. M. Andújar, and J. M. Enrique, “A new inexpensive pyranometer for the visible spectral range,” Sensors, 9, 4615–4634, 2009.[6] D. W. Medugu, F. W. Burari, and A. A. Abdulazeez, “Construction of a reliable model pyranometer for irradiance measurements,” African Journal of Biotechnology, 9, 1719–1725, 2010.[7] ISO 9847, Solar Energy — Calibration of field pyranometer by comparison to a reference pyranometer. 2013.[8] ISO 9060, Standard & Pyranometer Measurement Accuracy. 2012.[9] W. A. Vilela, “Estudo, desenvolvimento e caracterização de radiômetros para medição da raciação solar,” Tese de Doutorado, Instituto Nacional de Pesquisas Espaciais - INPE, São José dos Campos - SP, 2010.[10] WMM, “Instruments and observing methodos - Report No 98.” World Meteorological Organization, 2009.[11] M. et al Krazenerg, “Rastreabilidade de radiômetros para medida da energia solar,” in Meteorologia 2003 - Meteorologia para a vida, Recife - PE, 2006.[12] M. A. M. Bohórquez, J. M. E. Gómez, E. D. Aranda, M. J. V. Vázquez, and J. M. A. Márquez, “Sistema de instrumentación de bajo coste para la medición de irradiancia en el rango espectral visible,” in XXXII Jornadas de Automática, Sevilla - Espanha, 1, 2011. 1.[13] S. N. Nwankowo, M. N. Nnabuchi, and J. E. Ekpe, “Construction and characterization of a pyranometer using locally avaliable materials for global solar radiation measurement,” Asian Transactions on Basic and Applied Sciences, 2, 2012.[14] J. L. Souza and J. F. Escobedo, “Construção de um saldo radiômetro com termopilha de filme fino e avaliação de sua performance,” Revista Brasileira de Meteorologia, 10, 29–36, 1995.[15] J. F. Escobedo, V. A. Frisina, R. P. Ricieri, and A. P. Oliveira, “Radiômetros solares com termopilhas de filmes finos - I Descrição e custos,” Revista Brasileira de Aplicações de Vácuo, 16,, 1997.[16] J. M. Gomes, P. M. Ferreira, and A. E. Ruano, “Implementation of an intelligent sensor for measurement and prediction of solar radiation and atmospheric temperature,” in Sensors Journal, IEEE, Floriana - Malta, 2011, 1–6.[17] E. Avallone, “Avaliação da Eficiência Térmica de um Coletor Solar Tipo Tubo Evacuado Modificado,” Master Thesis, Universidade Estadual Paulista - Júlio de Mesquita Filho, Campus de Bauru, 2013.[18] J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Process, 4a., vol. 1. USA: John Wiley & Sons, 2013.[19] S. A. Kalogirou, “Solar thermal collectors and applications,” Progress in Energy and Combustion Science, 30, 231–295, 2004.[20] S. A. Kalogirou, Solar Energy Engineering, 1a., vol. 1. United States of America: British Library Cataloguing-in-Publication, 2009.[21] P. Berdahl and M. Martin, “Emissivity of clear skies,” Solar Energy, vol. 32, no. 5, p. 663, 1984.[22] K. G. T. Hollands, T. E. Unny, G. D. Raitby, and L. Konieck, “Free convection heat transfer across inclined air layers,” Trans ASME J. Heat Transfer, 98, 1976.[23] F. P. Incropera, D. P. Dewit, T. I. Bergman, and A. S. Lavine, Fundamentos de transferência de calor e massa, 6th ed., vol. 1, 1 vols. Rio de Janeiro: LTC - Livros técnicos e científicos Editora Ltda, 2008.[24] V. L. Scalon and S. D. R. Oliveira, “Theoretical analysis of a flat pyranometer,” presented at the VII SiAT - Simpósio de Análise Térmica, Universidade Estadual Paulista “Júlio de Mesquita Filho,” 4, 2015.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Regular Original Research Article
Authors

Elson Avallone

Paulo César Mioralli This is me

Vicente Luiz Scalon This is me

Alcides Padilha This is me

Santiago Del Rio Oliveira This is me

Publication Date March 1, 2018
Published in Issue Year 2018 Volume: 21 Issue: 1

Cite

APA Avallone, E., Mioralli, P. C., Scalon, V. L., Padilha, A., et al. (2018). Thermal Pyranometer Using the Open Hardware Arduino Platform. International Journal of Thermodynamics, 21(1), 1-5. https://doi.org/10.5541/ijot.5000209000
AMA Avallone E, Mioralli PC, Scalon VL, Padilha A, Oliveira SDR. Thermal Pyranometer Using the Open Hardware Arduino Platform. International Journal of Thermodynamics. March 2018;21(1):1-5. doi:10.5541/ijot.5000209000
Chicago Avallone, Elson, Paulo César Mioralli, Vicente Luiz Scalon, Alcides Padilha, and Santiago Del Rio Oliveira. “Thermal Pyranometer Using the Open Hardware Arduino Platform”. International Journal of Thermodynamics 21, no. 1 (March 2018): 1-5. https://doi.org/10.5541/ijot.5000209000.
EndNote Avallone E, Mioralli PC, Scalon VL, Padilha A, Oliveira SDR (March 1, 2018) Thermal Pyranometer Using the Open Hardware Arduino Platform. International Journal of Thermodynamics 21 1 1–5.
IEEE E. Avallone, P. C. Mioralli, V. L. Scalon, A. Padilha, and S. D. R. Oliveira, “Thermal Pyranometer Using the Open Hardware Arduino Platform”, International Journal of Thermodynamics, vol. 21, no. 1, pp. 1–5, 2018, doi: 10.5541/ijot.5000209000.
ISNAD Avallone, Elson et al. “Thermal Pyranometer Using the Open Hardware Arduino Platform”. International Journal of Thermodynamics 21/1 (March 2018), 1-5. https://doi.org/10.5541/ijot.5000209000.
JAMA Avallone E, Mioralli PC, Scalon VL, Padilha A, Oliveira SDR. Thermal Pyranometer Using the Open Hardware Arduino Platform. International Journal of Thermodynamics. 2018;21:1–5.
MLA Avallone, Elson et al. “Thermal Pyranometer Using the Open Hardware Arduino Platform”. International Journal of Thermodynamics, vol. 21, no. 1, 2018, pp. 1-5, doi:10.5541/ijot.5000209000.
Vancouver Avallone E, Mioralli PC, Scalon VL, Padilha A, Oliveira SDR. Thermal Pyranometer Using the Open Hardware Arduino Platform. International Journal of Thermodynamics. 2018;21(1):1-5.