Exhaust gas recirculation can be applied with the intention of reducing CO2 emissions. When a fraction of the exhaust gas is injected in the entry of a gas turbine, the amount of CO2 in the exhaust gas not being recirculated will be higher and less complicated to capture. However, with this change in combustion air composition, especially the reduced concentration of oxygen, the combustion process will be affected. The lower oxygen concentration decreases the stability and the increased amount of CO2, H2O and N2 will decrease the combustion temperature and thus, the NOx emissions. Testing has been performed on a 65 kW gas turbine combustor, to investigate the effect of adding N2, CO2 and O2 in the combustion process, with focus on stability and emissions of NOx. Results show that adding N2 and CO2 decreases the NOx emissions, whereas O2 addition increases the NOx emissions. The tests have been performed both in a diffusion flame (pilot burner) and a premixed flame (main burner), and for additives being injected with the fuel or with the air stream. Addition into the fuel stream is proven to affect the NOx emissions the most. The stability limits of the flames are indicated with respect to mass-based additive-to-fuel ratios.
Primary Language | English |
---|---|
Journal Section | Regular Original Research Article |
Authors | |
Publication Date | December 1, 2005 |
Published in Issue | Year 2005 Volume: 8 Issue: 4 |