Research Article
BibTex RIS Cite
Year 2023, Volume: 26 Issue: 1, 37 - 46, 14.03.2023
https://doi.org/10.5541/ijot.1170335

Abstract

References

  • G. Stolz, “Numerical solutions to an inverse problem of heat conduction for simple shapes,” J. Heat Transfer, 82, 20-25, 1960. DOI: 10.1115/1.3679871.
  • D. Necsulescu (2009) Advanced Mechatronics: Monitoring and Control of Spatially Distributed Systems, Singapore: World Scientific Company.
  • K. Woodbury (2003) Inverse Engineering Handbook, Boca Raton: CRC Press.
  • M. Ozisik and H. Orlande (2000) Inverse Heat Transfer: Fundamentals and Applications, New York ; Taylor & Francis.
  • J. Beck, B. Blackwell and JR Charles (1985) Inverse Heat Conduction: Ill-posed Problems. New York; John Willey & Sons.
  • L. Torsten, A. Mhamdi, and W. Marquardt, “Design, formulation, and solution of multidimensional inverse heat conduction problems,” Numer. Heat Tr-B Fund., 47, 111 - 133, 2005. DOI: 10.1080/10407790590883351.
  • X. Lu and P. Tervola, “Transient heat conduction in the composite slab-analytical method,” J Phys Math Gen, 38, 81-96, 2005. DOI: 10.1088/0305-4470/38/1/005.
  • K. W. Khobragade, V. Varghese and N. W. Khobragade, “An inverse transient thermoelastic problem of a thin annular disc,” Appl. Math. E-Notes, 6, 17-25, 2006.
  • P. L. Woodfield, M. Monde, and Y. Mitsutake, “Improved analytical solution for inverse heat conduction problems on thermally thick and semi-infinite solids,” Int. J. Heat Mass Transfer, 49, 2864-2876, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.01.050.
  • R. Pourgholi, and M. Rostamian, “A numerical technique for solving IHCPs using Tikhonov Regularization Method,” Appl. Math. Model, 34, 2102-2110, 2010. DOI: 10.1016/j.apm.2009.10.022.
  • S. Danaila, and A. Chira, “Mathematical and numerical modeling of inverse heat conduction problem,” INCAS BULLETIN, 6, 23–39, 2014. DOI: 10.13111/2066-8201.2014.6.4.3.
  • M. Ivanchov and N. Kinash, “Inverse problem for the heat-conduction equation in a rectangular domain,” Ukr. Math. J., 69, 2018.DOI: 10.1007/s11253-018-1476-1.
  • H. Chen, I. Jay, J. Frankel, and M. Keyhani, “Nonlinear inverse heat conduction problem of surface temperature estimation by calibration integral equation method,” Numer. Heat Tr-B Fund., 73, 263–291, 2018. DOI: 10.1080/10407790.2018.1464316.
  • C. Chang, C. Liu, and C. Wang, “Review of computational schemes in inverse heat conduction problems,” Smart Sci., 6, 94–103, 2018. DOI: 10.1080/23080477.2017.1408987.
  • S. Kukla and U. Siedlecka, “Laplace transform solution of the problem of time-fractional heat conduction in a two-Layer slab,” J. Appl. Comput. Mech., 14, 105-113, 2015.DOI: 10.17512/jamcm.2015.4.10.
  • E. Hoashi, T. Yokomine, A. Shimizu, and T. Kunugi, “Numerical analysis of wave-type heat transfer propagating in a thin foil irradiated by short-pulsed laser,” Int. J. Heat Mass Transf., 46, 4083–4095, 2003. DOI: 10.1016/S0017-9310(03)00225-4.
  • X. Ai and B. Q. Li, “Numerical simulation of thermal wave propagation during laser processing of thin films,” J. Electron. Mater., 34, 583–591, 2005. DOI: 10.1007/s11664-005-0069-6.
  • T. T. Lam and E. Fong, “Application of solution structure theorem to non-Fourier heat conduction problems: Analytical approach,” Int. J. Heat Mass Transf., 54, 4796–4806, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.06.028.
  • T. T. Lam, “A unified solution of several heat conduction models,” Int. J. Heat Mass Transf., 56, 653–666, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.08.055.
  • C. Cattaneo, “Sur uneForme de I’equation de la Chaleur Eliminant le Paradoxed’une Propagation Instantanee’,” ComptesRendus de l’Académie des Sciences, 247, 431-433, 1958.
  • P. Vernotte, “Les paradoxes de la théorie continue de l’équation de la chaleur,” C. R. Acad. Sci. Paris, 246, 3154-3155, 1958.
  • A. Compte and R. Metzier, “The generalized Cattaneo equation for the description of anomalous transport processes,” J. Phys. A: Math. Gen., 30, 7277-7289, 1997.
  • Y. Z. Povstenko, “Fractional Cattaneo-type equations and generalized thermoela-sticity,” J. Therm. Stresses, 34, 97-114, 2011. DOI: 10.1080/01495739.2010.511931
  • T. N. Mishra and K. N. Rai, “Numerical solution of FSPL heat conduction equation for analysis of thermal propagation,” Appl. Math. Comput., 273, 1006–1017, 2016. DOI: 10.1016/j.amc.2015.10.082.
  • H.-T. Qi, H.-Y. Xu, and X.-W. Guo, “The Cattaneo-type time fractional heat conduction equation for laser heating,” Comput. Math. Appl., 66, 824–831, 2013. DOI: 10.1016/j.camwa.2012.11.021.
  • H. T. Qi, H. Y. Xu and X. W. Guo, “The Cattaneo-type time fractional heat conduction equation for laser heating,” Comput. Math. Appl., 66, 824–831, 2013. DOI: 10.1016/j.camwa.2012.11.021
  • H. T. Qi, and X.W. Guo, “Transient fractional heat conduction with generalized Cattaneo model,” Int. J. Heat Mass Transfer, 76, 535–539, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.086.
  • H. Y. Xu, H. T. Qi, and X. Y. Jiang, “Fractional Cattaneo heat equation in a semi-infinite medium,” Chin. Phys. B, 22, 014401, 2013. DOI: 10.1088/1674-1056/22/1/014401
  • G. Y. Xu, J. B. Wang, and Z. Han, “Study on the transient temperature field based on the fractional heat conduction equation for laser heating,” Appl. Math. Mech., 36, 844–849, 2015.
  • H. R. Ghazizadeh, M. Maerefat, and A. Azimi, “Explicit and implicit finite difference schemes for fractional Cattaneo equation,” J. Comput. Phys., 229, 7042–7057, 2010. DOI: 10.1016/j.jcp.2010.05.039.
  • M. N. Özisik (1993) Heat Conduction, John Wiley & Sons, New York.
  • D. Y. Tzou, “Thermal shock phenomena under high rate response in solids,” Ann. Rev. Heat Transf., 4, 111–185, 1992. DOI: 10.1615/AnnualRevHeatTransfer.v4.50
  • M. E. Gurtin and A. C. Pipkin, “A general theory of heat conduction with finite wave speeds,” Arch. Rational Mech. Anal., 31, 113–126, 1968. DOI: 10.1007/BF00281373
  • A. Compte, A. Metzler, and J. Camacho, “Biased continuous time random walks between parallel plates,” Phys. Rev. E, 56, No. 2, 1445-1454, 1997.
  • M. N. Özisik, D. Y. Tzou, “On the wave theory in heat conduction,” J. Heat Transf., 116, 526–535, 1994.DOI: 10.1115/1.2910903
  • S. Kaliski, “Wave equations of thermoelasticity,” Bull. Acad. Polon. Sci. Ser. Sci. Techn., 13, 253-260, 1965.
  • H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, 15, 299-309, 1967.
  • I. Podlubny (1999) Fractional Differential Equations, Academic Press, New York.
  • Y. Povstenko, “Axisymmetric solutions to fractional diffusion-wave equation in a cylinder under Robin boundary condition,” Eur. Phys. J. Spec. Top., 222, 1767–1777, 2013. DOI: 10.1140/epjst/e2013-01962-4.
  • Y. Z. Povstenko, “Axisymmetric Solutions to Time-Fractional Heat Conduction Equation in a Half-Space under Robin Boundary Conditions,” Int. J. Differ. Equ., 2012, 1–13, 2012. DOI: 10.1155/2012/154085.
  • Y. Povstenko, “Fundamental solutions to the fractional heat conduction equation in a ball under Robin boundary condition,” Open Math., 12, 2014. DOI: 10.2478/s11533-013-0368-8.
  • H. Beyer and S. Kempfle, “Definition of physically consistent damping laws with fractional derivatives,” ZAMM - J. Appl. Math. Mech., 75, 623–635, 1995. DOI: 10.1002/zamm.19950750820.
  • N. Noda, R. B. Hetnarski, and Y. Tanigawa (2003) Thermal stresses, 2nd Ed., Taylor and Francis, New York, 2003.
  • B.E. Ghonge and K.P. Ghadle, “An inverse transient thermoelastic problem of solid sphere,” Bulletin of Pure and Applied Sciences, 29, 1-9, 2010.
  • I. N. Snedden (1972) The Use of Integral Transforms, McGraw-Hill Book Co., New York.
  • I. H. Chen, “Modified Fourier‐Bessel series and finite spherical Hankel transform,” Int. J. Math. Educ. Sci. Technol., 13, No. 3, 281-283, 1982. DOI: 10.1080/0020739820130307
  • S. N. Li, B.Y. Cao, “Fractional Boltzmann transport equation for anomalous heat transport and divergent thermal conductivity,” Int. J. Heat Mass Transf., 137, 84-89, 2019.
  • S. N. Li, B.Y. Cao, “Fractional-order heat conduction models from generalized Boltzmann transport equation,” Philos. Trans. R. Soc. A, 378, 20190280, 2020.

Time-Fractional Cattaneo-Type Thermoelastic Interior-Boundary Value Problem Within A Rigid Ball

Year 2023, Volume: 26 Issue: 1, 37 - 46, 14.03.2023
https://doi.org/10.5541/ijot.1170335

Abstract

The paper discusses the solution of an interior-boundary value problem of one-dimensional time-fractional Cattaneo-type heat conduction and its stress fields for a rigid ball. The interior value problem describes the dependence of the boundary conditions within the ball's inner plane at any instant with a prescribed temperature state, in contrast to the exterior value problem, which relates the known surface temperature to boundary conditions. A single-phase-lag equation with Caputo fractional derivatives is proposed to model the heat equation in a medium subjected to time-dependent physical boundary conditions. The application of the finite spherical Hankel and Laplace transform technique to heat conduction is discussed. The influence of the fractional-order parameter and the relaxation time is examined on the temperature fields and their related stresses. The findings show that the slower the thermal wave, the bigger the fractional-order setting, and the higher the period of relaxation, the slower the heat flux propagates.

References

  • G. Stolz, “Numerical solutions to an inverse problem of heat conduction for simple shapes,” J. Heat Transfer, 82, 20-25, 1960. DOI: 10.1115/1.3679871.
  • D. Necsulescu (2009) Advanced Mechatronics: Monitoring and Control of Spatially Distributed Systems, Singapore: World Scientific Company.
  • K. Woodbury (2003) Inverse Engineering Handbook, Boca Raton: CRC Press.
  • M. Ozisik and H. Orlande (2000) Inverse Heat Transfer: Fundamentals and Applications, New York ; Taylor & Francis.
  • J. Beck, B. Blackwell and JR Charles (1985) Inverse Heat Conduction: Ill-posed Problems. New York; John Willey & Sons.
  • L. Torsten, A. Mhamdi, and W. Marquardt, “Design, formulation, and solution of multidimensional inverse heat conduction problems,” Numer. Heat Tr-B Fund., 47, 111 - 133, 2005. DOI: 10.1080/10407790590883351.
  • X. Lu and P. Tervola, “Transient heat conduction in the composite slab-analytical method,” J Phys Math Gen, 38, 81-96, 2005. DOI: 10.1088/0305-4470/38/1/005.
  • K. W. Khobragade, V. Varghese and N. W. Khobragade, “An inverse transient thermoelastic problem of a thin annular disc,” Appl. Math. E-Notes, 6, 17-25, 2006.
  • P. L. Woodfield, M. Monde, and Y. Mitsutake, “Improved analytical solution for inverse heat conduction problems on thermally thick and semi-infinite solids,” Int. J. Heat Mass Transfer, 49, 2864-2876, 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.01.050.
  • R. Pourgholi, and M. Rostamian, “A numerical technique for solving IHCPs using Tikhonov Regularization Method,” Appl. Math. Model, 34, 2102-2110, 2010. DOI: 10.1016/j.apm.2009.10.022.
  • S. Danaila, and A. Chira, “Mathematical and numerical modeling of inverse heat conduction problem,” INCAS BULLETIN, 6, 23–39, 2014. DOI: 10.13111/2066-8201.2014.6.4.3.
  • M. Ivanchov and N. Kinash, “Inverse problem for the heat-conduction equation in a rectangular domain,” Ukr. Math. J., 69, 2018.DOI: 10.1007/s11253-018-1476-1.
  • H. Chen, I. Jay, J. Frankel, and M. Keyhani, “Nonlinear inverse heat conduction problem of surface temperature estimation by calibration integral equation method,” Numer. Heat Tr-B Fund., 73, 263–291, 2018. DOI: 10.1080/10407790.2018.1464316.
  • C. Chang, C. Liu, and C. Wang, “Review of computational schemes in inverse heat conduction problems,” Smart Sci., 6, 94–103, 2018. DOI: 10.1080/23080477.2017.1408987.
  • S. Kukla and U. Siedlecka, “Laplace transform solution of the problem of time-fractional heat conduction in a two-Layer slab,” J. Appl. Comput. Mech., 14, 105-113, 2015.DOI: 10.17512/jamcm.2015.4.10.
  • E. Hoashi, T. Yokomine, A. Shimizu, and T. Kunugi, “Numerical analysis of wave-type heat transfer propagating in a thin foil irradiated by short-pulsed laser,” Int. J. Heat Mass Transf., 46, 4083–4095, 2003. DOI: 10.1016/S0017-9310(03)00225-4.
  • X. Ai and B. Q. Li, “Numerical simulation of thermal wave propagation during laser processing of thin films,” J. Electron. Mater., 34, 583–591, 2005. DOI: 10.1007/s11664-005-0069-6.
  • T. T. Lam and E. Fong, “Application of solution structure theorem to non-Fourier heat conduction problems: Analytical approach,” Int. J. Heat Mass Transf., 54, 4796–4806, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.06.028.
  • T. T. Lam, “A unified solution of several heat conduction models,” Int. J. Heat Mass Transf., 56, 653–666, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.08.055.
  • C. Cattaneo, “Sur uneForme de I’equation de la Chaleur Eliminant le Paradoxed’une Propagation Instantanee’,” ComptesRendus de l’Académie des Sciences, 247, 431-433, 1958.
  • P. Vernotte, “Les paradoxes de la théorie continue de l’équation de la chaleur,” C. R. Acad. Sci. Paris, 246, 3154-3155, 1958.
  • A. Compte and R. Metzier, “The generalized Cattaneo equation for the description of anomalous transport processes,” J. Phys. A: Math. Gen., 30, 7277-7289, 1997.
  • Y. Z. Povstenko, “Fractional Cattaneo-type equations and generalized thermoela-sticity,” J. Therm. Stresses, 34, 97-114, 2011. DOI: 10.1080/01495739.2010.511931
  • T. N. Mishra and K. N. Rai, “Numerical solution of FSPL heat conduction equation for analysis of thermal propagation,” Appl. Math. Comput., 273, 1006–1017, 2016. DOI: 10.1016/j.amc.2015.10.082.
  • H.-T. Qi, H.-Y. Xu, and X.-W. Guo, “The Cattaneo-type time fractional heat conduction equation for laser heating,” Comput. Math. Appl., 66, 824–831, 2013. DOI: 10.1016/j.camwa.2012.11.021.
  • H. T. Qi, H. Y. Xu and X. W. Guo, “The Cattaneo-type time fractional heat conduction equation for laser heating,” Comput. Math. Appl., 66, 824–831, 2013. DOI: 10.1016/j.camwa.2012.11.021
  • H. T. Qi, and X.W. Guo, “Transient fractional heat conduction with generalized Cattaneo model,” Int. J. Heat Mass Transfer, 76, 535–539, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.086.
  • H. Y. Xu, H. T. Qi, and X. Y. Jiang, “Fractional Cattaneo heat equation in a semi-infinite medium,” Chin. Phys. B, 22, 014401, 2013. DOI: 10.1088/1674-1056/22/1/014401
  • G. Y. Xu, J. B. Wang, and Z. Han, “Study on the transient temperature field based on the fractional heat conduction equation for laser heating,” Appl. Math. Mech., 36, 844–849, 2015.
  • H. R. Ghazizadeh, M. Maerefat, and A. Azimi, “Explicit and implicit finite difference schemes for fractional Cattaneo equation,” J. Comput. Phys., 229, 7042–7057, 2010. DOI: 10.1016/j.jcp.2010.05.039.
  • M. N. Özisik (1993) Heat Conduction, John Wiley & Sons, New York.
  • D. Y. Tzou, “Thermal shock phenomena under high rate response in solids,” Ann. Rev. Heat Transf., 4, 111–185, 1992. DOI: 10.1615/AnnualRevHeatTransfer.v4.50
  • M. E. Gurtin and A. C. Pipkin, “A general theory of heat conduction with finite wave speeds,” Arch. Rational Mech. Anal., 31, 113–126, 1968. DOI: 10.1007/BF00281373
  • A. Compte, A. Metzler, and J. Camacho, “Biased continuous time random walks between parallel plates,” Phys. Rev. E, 56, No. 2, 1445-1454, 1997.
  • M. N. Özisik, D. Y. Tzou, “On the wave theory in heat conduction,” J. Heat Transf., 116, 526–535, 1994.DOI: 10.1115/1.2910903
  • S. Kaliski, “Wave equations of thermoelasticity,” Bull. Acad. Polon. Sci. Ser. Sci. Techn., 13, 253-260, 1965.
  • H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, 15, 299-309, 1967.
  • I. Podlubny (1999) Fractional Differential Equations, Academic Press, New York.
  • Y. Povstenko, “Axisymmetric solutions to fractional diffusion-wave equation in a cylinder under Robin boundary condition,” Eur. Phys. J. Spec. Top., 222, 1767–1777, 2013. DOI: 10.1140/epjst/e2013-01962-4.
  • Y. Z. Povstenko, “Axisymmetric Solutions to Time-Fractional Heat Conduction Equation in a Half-Space under Robin Boundary Conditions,” Int. J. Differ. Equ., 2012, 1–13, 2012. DOI: 10.1155/2012/154085.
  • Y. Povstenko, “Fundamental solutions to the fractional heat conduction equation in a ball under Robin boundary condition,” Open Math., 12, 2014. DOI: 10.2478/s11533-013-0368-8.
  • H. Beyer and S. Kempfle, “Definition of physically consistent damping laws with fractional derivatives,” ZAMM - J. Appl. Math. Mech., 75, 623–635, 1995. DOI: 10.1002/zamm.19950750820.
  • N. Noda, R. B. Hetnarski, and Y. Tanigawa (2003) Thermal stresses, 2nd Ed., Taylor and Francis, New York, 2003.
  • B.E. Ghonge and K.P. Ghadle, “An inverse transient thermoelastic problem of solid sphere,” Bulletin of Pure and Applied Sciences, 29, 1-9, 2010.
  • I. N. Snedden (1972) The Use of Integral Transforms, McGraw-Hill Book Co., New York.
  • I. H. Chen, “Modified Fourier‐Bessel series and finite spherical Hankel transform,” Int. J. Math. Educ. Sci. Technol., 13, No. 3, 281-283, 1982. DOI: 10.1080/0020739820130307
  • S. N. Li, B.Y. Cao, “Fractional Boltzmann transport equation for anomalous heat transport and divergent thermal conductivity,” Int. J. Heat Mass Transf., 137, 84-89, 2019.
  • S. N. Li, B.Y. Cao, “Fractional-order heat conduction models from generalized Boltzmann transport equation,” Philos. Trans. R. Soc. A, 378, 20190280, 2020.
There are 48 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Research Articles
Authors

G. Dhameja This is me

L. Khalsa This is me

Vinod Varghese 0000-0002-9660-7610

Publication Date March 14, 2023
Published in Issue Year 2023 Volume: 26 Issue: 1

Cite

APA Dhameja, G., Khalsa, L., & Varghese, V. (2023). Time-Fractional Cattaneo-Type Thermoelastic Interior-Boundary Value Problem Within A Rigid Ball. International Journal of Thermodynamics, 26(1), 37-46. https://doi.org/10.5541/ijot.1170335
AMA Dhameja G, Khalsa L, Varghese V. Time-Fractional Cattaneo-Type Thermoelastic Interior-Boundary Value Problem Within A Rigid Ball. International Journal of Thermodynamics. March 2023;26(1):37-46. doi:10.5541/ijot.1170335
Chicago Dhameja, G., L. Khalsa, and Vinod Varghese. “Time-Fractional Cattaneo-Type Thermoelastic Interior-Boundary Value Problem Within A Rigid Ball”. International Journal of Thermodynamics 26, no. 1 (March 2023): 37-46. https://doi.org/10.5541/ijot.1170335.
EndNote Dhameja G, Khalsa L, Varghese V (March 1, 2023) Time-Fractional Cattaneo-Type Thermoelastic Interior-Boundary Value Problem Within A Rigid Ball. International Journal of Thermodynamics 26 1 37–46.
IEEE G. Dhameja, L. Khalsa, and V. Varghese, “Time-Fractional Cattaneo-Type Thermoelastic Interior-Boundary Value Problem Within A Rigid Ball”, International Journal of Thermodynamics, vol. 26, no. 1, pp. 37–46, 2023, doi: 10.5541/ijot.1170335.
ISNAD Dhameja, G. et al. “Time-Fractional Cattaneo-Type Thermoelastic Interior-Boundary Value Problem Within A Rigid Ball”. International Journal of Thermodynamics 26/1 (March 2023), 37-46. https://doi.org/10.5541/ijot.1170335.
JAMA Dhameja G, Khalsa L, Varghese V. Time-Fractional Cattaneo-Type Thermoelastic Interior-Boundary Value Problem Within A Rigid Ball. International Journal of Thermodynamics. 2023;26:37–46.
MLA Dhameja, G. et al. “Time-Fractional Cattaneo-Type Thermoelastic Interior-Boundary Value Problem Within A Rigid Ball”. International Journal of Thermodynamics, vol. 26, no. 1, 2023, pp. 37-46, doi:10.5541/ijot.1170335.
Vancouver Dhameja G, Khalsa L, Varghese V. Time-Fractional Cattaneo-Type Thermoelastic Interior-Boundary Value Problem Within A Rigid Ball. International Journal of Thermodynamics. 2023;26(1):37-46.