Review
BibTex RIS Cite
Year 2023, Volume: 26 Issue: 3, 47 - 62, 01.09.2023
https://doi.org/10.5541/ijot.1257725

Abstract

References

  • A. Bejan, Advanced engineering thermodynamics, New Jersey: John Wiley & Sons, 2016.
  • P. G. Tait, Sketch of thermodynamics, Edinburgh: D. Douglas, 1877.
  • R. Clausius, "The second law of thermodynamics", The World of Physics, 1, 1865.
  • J. M. Heath, XXVI. "On the principles of thermodynamics", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 40, no. 266, pp. 218-220, 1870, doi.org/10.1080/14786447008640386.
  • C. Maes, and H. Tasaki, "Second law of thermodynamics for macroscopic mechanics coupled to thermodynamic degrees of freedom", Letters in Mathematical Physics, Vol. 79, pp. 251-261, 2007, doi.org/10.1007/s11005-006-0136-9.
  • S. F. Wu, Wang, B. Yang, G.H. and P. M. Zhang, "The generalized second law of thermodynamics in generalized gravity theories", Classical and Quantum Gravity, Vol. 25, no. 23, p.235018, 2008, doi.org/10.1088/0264-9381/25/23/235018.
  • J. Xuereb, S. Campbell, J. Goold, and A. Xuereb, "DQC1 as an Open Quantum System", arXiv preprint arXiv:2209.03947, 2022, doi.org/10.48550/arXiv.2209.03947.
  • B. C. Eu, "Kinetic theory and irreversible thermodynamics", Accounts of Chemical Research, Vol. 19, no. 5, pp. 153-160, 1986, doi.org/10.1021/ar00125a005.
  • E. H. Lieb, and J. Yngvason, "The physics and mathematics of the second law of thermodynamics", Physics Reports, Vol. 310, no. 1, pp. 1-96, 1999, doi.org/10.1016/S0370-1573(98)00082-9.
  • R. C. Nichols, XLIV. "On the proof of the second law of thermodynamics", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 1, no. 5, pp. 369-373, 1876, doi.org/10.1080/14786447608639054.
  • L. D. Rio, J. Åberg, R. Renner, O. Dahlsten, and V. Vedral, "The thermodynamic meaning of negative entropy", Nature, Vol. 474, no. 7349, pp. 61-63, 2011.
  • L. A. Sosnovskiy, and S. S. Sherbakov, "Mechanothermodynamic entropy and analysis of damage state of complex systems", Entropy, Vol. 18, no. 7, p.268, 2016, doi.org/10.3390/e18070268.
  • L. A. Sosnovskiy, and S. S. Sherbakov, " A model of mechanothermodynamic entropy in tribology", Entropy, Vol. 19, no. 3, p.115, 2017, doi.org/10.3390/e19030115.
  • P. V. Coveney, "The second law of thermodynamics: entropy, irreversibility and dynamics", Nature, Vol. 333, no. 6172, pp. 409-415, 1988, doi.org/10.1038/333409a0.
  • W. j. Macquorn Rankine, C. E. LL. D. F. SS. L, "On the second law of thermodynamics", The London , Edinburg, and Dublin Philosophical Magazine and journal of science, Vol. 30, no. 203, 1965.
  • C. M. Dafermos, "The second law of thermodynamics and stability", Archive for Rational Mechanics and Analysis, Vol. 70, no. 2, pp. 167-179, 1979.
  • C. Basaran, and C. Y. Yan, "A thermodynamic framework for damage mechanics of solder joints” J. Electron. Packaging, 120, 4, 1998, doi.org/10.1115/1.2792650.
  • C. S. Desai, C. Basaran, T. Dishongh, and J. L. Prince, "Thermomechanical analysis in electronic packaging with unified constitutive model for materials and joints", IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, Vol. 21, no. 1, pp. 87-97, 1998, doi.org/10.1109/96.659511.
  • L. A. Sosnovskiy, and S. S. Sherbakov, "On the development of mechanothermodynamics as a new branch of physics", Entropy, Vol. 21, no. 12, p. 1188, 2019, doi.org/10.3390/e21121188.
  • R. Bendikiene, A. Bahdanovich, R. Cesnavicius, A. Ciuplys, V. Grigas, A. Jutas, D. Marmysh, A. Nasan, L. Shemet, S. Sherbakov, and L. Sosnovskiy, "Tribo-fatigue behavior of austempered ductile iron MoNiCa as new structural material for rail-wheel system", Materials Science, Vol. 26, no. 4, pp. 432-437, 2020, doi.org/10.5755/j01.ms.26.4.25384.
  • T. Hiemstra, "Formation, stability, and solubility of metal oxide nanoparticles: Surface entropy, enthalpy, and free energy of ferrihydrite", Geochimica et Cosmochimica Acta, 158, pp. 179-198, 2015, doi.org/10.1016/j.gca.2015.02.032.
  • M. Sheikholeslami, M. Jafaryar, E. Abohamzeh, A. Shafee, and H. Babazadeh, "Energy and entropy evaluation and two-phase simulation of nanoparticles within a solar unit with impose of new turbulator", Sustainable Energy Technologies and Assessments, 39, p.100727, 2020, doi.org/10.1016/j.seta.2020.100727.
  • M. Sheikholeslami, M. Jafaryar, E. Abohamzeh, A. Shafee, Z. Li, and R. U. Haq, "Heat transfer of nanoparticles employing innovative turbulator considering entropy generation", International Journal of Heat and Mass Transfer, 136, pp. 1233-1240, 2019, doi.org/10.1016/j.ijheatmasstransfer.2019.03.091.
  • M. W. Glasscott, A. D. Pendergast, S. Goines, A. R. Bishop, A. T. Hoang, C. Renault, and J. E. Dick, "Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis", Nature Communications, Vol. 10, no. 1, p.2650, 2019, doi.org/10.1038/s41467-019-10303-z.
  • C. Zhang, Z. Peng, C. Huang, B. Zhang, C. Xing, H. Chen, H. Cheng, J. Wang, and S. Tang, "High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems", Nano Energy, 81, p.105609, 2021, doi.org/10.1016/j.nanoen.2020.105609.
  • J. F. Klein, Physical significance of entropy or of the second law, New York: D. Van Nostrand Company, 1910, doi.org/10.5962/bhl.title.19423.
  • E. G. D. Cohen, "Boltzmann and Einstein: Statistics and dynamics—An unsolved problem", Pramana, 64, pp. 635-643, 2005, doi.org/10.1007/BF02704573.
  • W. Thomson, "The kinetic theory of the dissipation of energy", Proceedings of the Royal Society of Edinburgh, 8, pp. 325-334, 1875, 9. doi.org/10.1017/S0370164600029680.
  • S. H. Burbury, "A theorem on the dissipation of energy", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 13, no. 83, pp. 417-419, 1882, LII. doi.org/10.1080/14786448208627206.
  • R. Lord, "On the dissipation of energy", Van Nostrand's Eclectic Engineering Magazine, Vol. 12, no. 78, pp. 1869-1879.
  • W. Thomson, "On a Universal Tendency in Nature to the Dissipation of Mechanical Energy", Proceedings of the Royal Society of Edinburgh, 3, pp.139-142, 1857, 2. doi.org/10.1017/S0370164600027541.
  • H. Lee, N. Campbell, J. Lee, T. J. Asel, T. R. Paudel, H. Zhou, J. W. Lee, B. Noesges, J. Seo, B. Park, and L. J. Brillson, "Direct observation of a two-dimensional hole gas at oxide interfaces", Nature materials, Vol. 17, no. 3, pp. 231-236, 2018, doi.org/10.1038/s41563-017-0002-4.
  • M. Akbarifar, M. Divandari, S. M. A. Boutorabi, S. H. Ha, Y. O. Yoon, and S. K. Kim, "Short-time oxidation of Al–Mg in dynamic conditions", Oxidation of Metals, 94, pp. 409-429, 2020,doi.org/10.1007/s11085-020-09999-y.
  • A. Dehhaghi, and S. M. A. Boutorabi, "Thickness estimation (folds and wrinkles) on short time dynamically formed double oxide film in Al-7Si-Mg alloyed with beryllium", Materials Research Express, Vol. 6, no. 10, p.106574, 2019,doi.org/10.1088/2053-1591/ab35ed.
  • J. Campbell, "The consolidation of metals: The origin of bifilms", Journal of materials science, 51, pp. 96-106, 2016, doi.org/10.1007/s10853-015-9399-9.
  • G. Gyarmati, G. Fegyverneki, T. Mende, and M. Tokár, "Characterization of the double oxide film content of liquid aluminum alloys by computed tomography", Materials Characterization, 157, p.109925, 2019, doi.org/10.1016/j.matchar.2019.109925.
  • H. Lee, N. Campbell, J. Lee, T. J. Asel, T. R. Paudel, H. Zhou, J. W. Lee, B. Noesges, J. Seo, B. Park, and L. J. Brillson, "Direct observation of a two-dimensional hole gas at oxide interfaces", Nature materials, Vol. 17, no. 3, pp. 231-236, 2018,doi.org/10.1038/s41563-017-0002-4.
  • A. Dehhaghi, and S. M. A. Boutorabi, "Nano Double Oxide Film (NDOF) Characteristics of A356 Alloy Casting Protected With Beryllium in Turbulence Conditions", Founding Research Journal, Vol. 2, no. 2, pp. 71-78, 2018.
  • S. M. A. Boutorabi, P. Torkaman, J. Campbell, and A. Zolfaghari, "Structure and properties of carbon steel cast by the ablation process", International Journal of Metalcasting, 15, pp. 306-318, 2021, doi.org/10.1007/s40962-020-00466-7.
  • A. H. Fazeli, H. Saghafian, S. M. A. Boutorabi, and J. Campbell, "The fluidity of aluminium ductile irons", International Journal of Metalcasting, pp. 1-10, 2021, doi.org/10.1007/s40962-021-00581-z.
  • Y. Mishin, "Thermodynamic theory of equilibrium fluctuations", Annals of Physics, 363, pp. 48-97, 2015, doi.org/10.1016/j.aop.2015.09.015.
  • A. Bravetti, C. S. Lopez-Monsalvo, and F. Nettel, "Contact symmetries and Hamiltonian thermodynamics", Annals of Physics, 361, pp. 377-400, 2015, doi.org/10.1016/j.aop.2015.07.010.
  • R. Dann, and R. Kosloff, "Quantum signatures in the quantum Carnot cycle", New Journal of Physics, Vol. 22, no. 1, p.013055, 2020, doi.org/10.1088/1367-2630/ab6876.
  • G. Bulnes Cuetara, A. Engels, and M. Esposito, "Stochastic thermodynamics of rapidly driven quantum systems", New Journal of Physics, 17, p.055002, 2015, doi.org/10.1088/1367-2630/17/5/055002.
  • R. Gallego, J. Eisert, and H. Wilming, "Thermodynamic work from operational principles", New Journal of Physics, Vol. 18, no. 10, p. 103017, 2016, doi.org/10.1088/1367-2630/18/10/103017.
  • G. Gour, M. P. Müller, V. Narasimhachar, R. W. Spekkens, and N. Y. Halpern, "The resource theory of informational nonequilibrium in thermodynamics", Physics Reports, 583, pp. 1-58, 2015, doi.org/10.1016/j.physrep.2015.04.003.
  • A. Puglisi, A. Sarracino, and A. Vulpiani, "Temperature in and out of equilibrium: A review of concepts, tools and attempts", Physics Reports, 709, pp. 1-60, 2017, doi.org/10.1016/j.physrep.2017.09.001.
  • Z. Said, L. S. Sundar, A. K. Tiwari, H. M. Ali, M. Sheikholeslami, E. Bellos, and H. Babar, "Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids", Physics Reports, 946, pp. 1-94, 2022, doi.org/10.1016/j.physrep.2021.07.002.
  • M. N. Bera, A. Riera, M. Lewenstein, and A. Winter, "Generalized laws of thermodynamics in the presence of correlations", Nature communications, Vol. 8, no. 1, p.2180, 2017, doi.org/10.1038/s41467-017-02370-x.
  • S. Shahsavari, "Possiblity unique combination for first and second law of thermodynamics", Quantum Journal of Engineering, Science and Technology, Vol. 2, no. 5, pp. 51-52, 2021,.
  • L. Qiu, N. Zhu, Y. Feng, E. E. Michaelides, G. Żyła, D. Jing, X. Zhang, P. M. Norris, C.N. Markides, and O. Mahian, "A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids", Physics Reports, 843, pp. 1-81, 2020, doi.org/10.1016/j.physrep.2019.12.001.
  • Á. Rivas, "Strong coupling thermodynamics of open quantum systems", Physical review letters, Vol. 124, no. 16, p.160601, 2020, doi.org/10.1103/PhysRevLett.124.160601.
  • I. Peshkov, M. Pavelka, E. Romenski, and M. Grmela, , "Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations", Continuum Mechanics and Thermodynamics, 30, pp.1343-1378, 2018, doi.org/10.1007/s00161-018-0621-2.
  • K. Ptaszyński, and M. Esposito, "Thermodynamics of quantum information flows", Physical review letters, Vol. 122, no. 15, p.150603, 2019, doi.org/10.1103/PhysRevLett.122.150603.
  • L. Masanes, and J. Oppenheim, "A general derivation and quantification of the third law of thermodynamics", Nature communications, Vol. 8, no. 1, pp. 1-7, 2017, doi.org/10.1038/ncomms14538.
  • S. Shahsavari, and M. Moradi, "A General Solution to the Different Formulations of the Second Law of Thermodynamics", Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, Vol. 82, no. 2, pp. 61-71, 2021, doi.org/10.37934/arfmts.82.2.6171.
  • S. Shahsavari, M. Moradi, and P. Torkaman, "A Quasi-Statistical Approach to the Boltzmann Entropy Equation Based on a Novel Energy Conservation Principle", Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, Vol. 101, no. 2, pp. 99-110, 2023, doi.org/10.37934/arfmts.101.2.99110.
  • S. Shahsavari, and M. Moradi, "A New Approach to the Energy Conservation Principle and Physical Systems", Ph.D. dissertation, Department of Mechanical Engineering, Isfahan University of Technology, IR, 2022.
  • S. Shahsavari, and M. Moradi, "A Study of the Entropy Production in Physical Processes from a New Perspective of the Energy Structure", Asian Journal of Applied Sciences (ISSN: 2321-0893), 8, 2020, doi.org/10.24203/ajas.v8i6.6472.
  • H. J. Borchers, "Some remarks on the second law of thermodynamics", Reports on mathematical physics, Vol. 22, no. 1, pp. 29-48, 1985, doi.org/10.1016/0034-4877(85)90004-7.
  • B. C. Eu, "Kinetic theory and irreversible thermodynamics", Accounts of Chemical Research, Vol. 19, no. 5, pp. 153-160, 1986, doi.org/10.1021/ar00125a005.
  • R. D. Gregory, Classical mechanics, Cambridge University Press, 2006.
  • É. Roldán, Irreversibility and dissipation in microscopic systems, Springer, 2014, doi.org/10.1007/978-3-319-07079-7.
  • D. R. Bland, The theory of linear viscoelasticity, New York: Courier Dover Publications, 2016.
  • S. Shahsavari, and P. Torkaman, "Energy Conservation Principle from the Perspective of the Energy Structure Theory", Asian Journal of Applied Sciences (ISSN: 2321–0893) Vol. 10, no. 5, 2022, doi.org/10.24203/ajas.v10i5.6950.
  • T. Z. Kalanov, "On the correct formulation of the first law of thermodynamics", In APS April Meeting Abstracts, pp. D1-055, 2006.
  • S. Carnot, R. Clausius, and W. T. B. Kelvin, The Second Law of Thermodynamics, American Book Company, 1899.
  • R. Luzzi, Á. R. Vasconcellos, and J. G. Ramos, "On the statistical foundations of irreversible thermodynamics", Fortschritte der Physik: Progress of Physics, Vol. 47, no. 4, pp. 401-432, 1999.
  • L. Onsager, "Reciprocal relations in irreversible processes", I. Physical review, Vol. 37, no. 4, p. 405, 1931, doi.org/10.1103/PhysRev.37.405.
  • M. Planck, "On the law of the energy distribution in the normal spectrum", Ann. Phys, Vol. 4, no. 553, pp. 1-11, 1901, doi.org/10.1016/B978-0-08-012102-4.50013-9.
  • S. Shahsavari, M. Moradi, and M. Esmaeilpour, "On the Irreversibility in Mechanical Systems Using a New Macroscopic Energy Structure Modeling", Asian Journal of Applied Sciences (ISSN: 2321–0893), Vol. 8, no. 6, 2020, doi.org/10.24203/ajas.v8i6.6473.
  • M. R. von Spakovsky, "The second law: A unified approach to thermodynamics applicable to all systems and all states", In AIP Conference Proceedings, Vol. 1033, no. 1, pp. 302-308, American Institute of Physics, 2008, doi.org/10.1063/1.2979049.
  • V. N. Pokrovskii, "A derivation of the main relations of nonequilibrium thermodynamics", International Scholarly Research Notices, 2013, doi.org/10.1155/2013/906136.
  • M. Esposito, and C. Van den Broeck, "Three faces of the second law. I. Master equation formulation", Physical Review E, Vol. 82, no. 1, p.011143, 2010, doi.org/10.1103/PhysRevE.82.011143.
  • M. S. Ma, and R. Zhao, "Corrected form of the first law of thermodynamics for regular black holes", Classical and Quantum Gravity, Vol. 31, no. 24, p.245014, 2014, doi.org/10.1088/0264-9381/31/24/245014.
  • T. W. Xue, and Z. Y. Guo, "What is the real Clausius statement of the second law of thermodynamics", Entropy, Vol. 21, no. 10, p.926, 2019.
  • V. N. Pokrovski, "Extended thermodynamics in a discrete-system approach", European journal of physics, Vol. 26, no. 5, p.769, 2005, doi.org/10.1088/0143-0807/26/5/009.
  • V. A. Etkin, "Methodological principles of modern thermodynamics", arXiv preprint arXiv:1401.0550, 2014.
  • J. Serrin, "Conceptual analysis of the classical second laws of thermodynamics", Archive for Rational Mechanics and Analysis, Vol. 70, no. 4, pp. 355-371, 1979, doi.org/10.1007/BF00281160.
  • P. Podio-Guidugli, "A virtual power format for thermomechanics", Continuum Mechanics and Thermodynamics, 20, pp. 479-487, 2009, doi.org/10.1007/s00161-009-0093-5.

Energy Structure Theory: A General Unified Thermodynamics Theory

Year 2023, Volume: 26 Issue: 3, 47 - 62, 01.09.2023
https://doi.org/10.5541/ijot.1257725

Abstract

This study, while reviewing some of the established unified equations and fundamentals of the energy structure and providing a detailed interpretation of their physical concepts, expands the relevant equations for new topics and applications, and in fact, establishes novel results and equations from the energy structure analysis. In fact, this paper establishes an energy components-based-general model inspired by the first and second laws of thermodynamics as well as using a new division to the total energy of the system. The established model is completed by extracting the physical direction for the feasible processes based on the energy components of the system. As two of the most important achievements of the energy components approach, using a new quasi-statistical approach as well as a novel energy conservation principle, an entropy equation is gained that has a common basis as the Boltzmann entropy equation as well as a general solution to the different formulations of the second law of thermodynamics is established. The established equations are gained without any limiting assumptions, and are governed to any physical system. Several basic examples have been studied, and matching the obtained results with expected ones is shown.

References

  • A. Bejan, Advanced engineering thermodynamics, New Jersey: John Wiley & Sons, 2016.
  • P. G. Tait, Sketch of thermodynamics, Edinburgh: D. Douglas, 1877.
  • R. Clausius, "The second law of thermodynamics", The World of Physics, 1, 1865.
  • J. M. Heath, XXVI. "On the principles of thermodynamics", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 40, no. 266, pp. 218-220, 1870, doi.org/10.1080/14786447008640386.
  • C. Maes, and H. Tasaki, "Second law of thermodynamics for macroscopic mechanics coupled to thermodynamic degrees of freedom", Letters in Mathematical Physics, Vol. 79, pp. 251-261, 2007, doi.org/10.1007/s11005-006-0136-9.
  • S. F. Wu, Wang, B. Yang, G.H. and P. M. Zhang, "The generalized second law of thermodynamics in generalized gravity theories", Classical and Quantum Gravity, Vol. 25, no. 23, p.235018, 2008, doi.org/10.1088/0264-9381/25/23/235018.
  • J. Xuereb, S. Campbell, J. Goold, and A. Xuereb, "DQC1 as an Open Quantum System", arXiv preprint arXiv:2209.03947, 2022, doi.org/10.48550/arXiv.2209.03947.
  • B. C. Eu, "Kinetic theory and irreversible thermodynamics", Accounts of Chemical Research, Vol. 19, no. 5, pp. 153-160, 1986, doi.org/10.1021/ar00125a005.
  • E. H. Lieb, and J. Yngvason, "The physics and mathematics of the second law of thermodynamics", Physics Reports, Vol. 310, no. 1, pp. 1-96, 1999, doi.org/10.1016/S0370-1573(98)00082-9.
  • R. C. Nichols, XLIV. "On the proof of the second law of thermodynamics", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 1, no. 5, pp. 369-373, 1876, doi.org/10.1080/14786447608639054.
  • L. D. Rio, J. Åberg, R. Renner, O. Dahlsten, and V. Vedral, "The thermodynamic meaning of negative entropy", Nature, Vol. 474, no. 7349, pp. 61-63, 2011.
  • L. A. Sosnovskiy, and S. S. Sherbakov, "Mechanothermodynamic entropy and analysis of damage state of complex systems", Entropy, Vol. 18, no. 7, p.268, 2016, doi.org/10.3390/e18070268.
  • L. A. Sosnovskiy, and S. S. Sherbakov, " A model of mechanothermodynamic entropy in tribology", Entropy, Vol. 19, no. 3, p.115, 2017, doi.org/10.3390/e19030115.
  • P. V. Coveney, "The second law of thermodynamics: entropy, irreversibility and dynamics", Nature, Vol. 333, no. 6172, pp. 409-415, 1988, doi.org/10.1038/333409a0.
  • W. j. Macquorn Rankine, C. E. LL. D. F. SS. L, "On the second law of thermodynamics", The London , Edinburg, and Dublin Philosophical Magazine and journal of science, Vol. 30, no. 203, 1965.
  • C. M. Dafermos, "The second law of thermodynamics and stability", Archive for Rational Mechanics and Analysis, Vol. 70, no. 2, pp. 167-179, 1979.
  • C. Basaran, and C. Y. Yan, "A thermodynamic framework for damage mechanics of solder joints” J. Electron. Packaging, 120, 4, 1998, doi.org/10.1115/1.2792650.
  • C. S. Desai, C. Basaran, T. Dishongh, and J. L. Prince, "Thermomechanical analysis in electronic packaging with unified constitutive model for materials and joints", IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B, Vol. 21, no. 1, pp. 87-97, 1998, doi.org/10.1109/96.659511.
  • L. A. Sosnovskiy, and S. S. Sherbakov, "On the development of mechanothermodynamics as a new branch of physics", Entropy, Vol. 21, no. 12, p. 1188, 2019, doi.org/10.3390/e21121188.
  • R. Bendikiene, A. Bahdanovich, R. Cesnavicius, A. Ciuplys, V. Grigas, A. Jutas, D. Marmysh, A. Nasan, L. Shemet, S. Sherbakov, and L. Sosnovskiy, "Tribo-fatigue behavior of austempered ductile iron MoNiCa as new structural material for rail-wheel system", Materials Science, Vol. 26, no. 4, pp. 432-437, 2020, doi.org/10.5755/j01.ms.26.4.25384.
  • T. Hiemstra, "Formation, stability, and solubility of metal oxide nanoparticles: Surface entropy, enthalpy, and free energy of ferrihydrite", Geochimica et Cosmochimica Acta, 158, pp. 179-198, 2015, doi.org/10.1016/j.gca.2015.02.032.
  • M. Sheikholeslami, M. Jafaryar, E. Abohamzeh, A. Shafee, and H. Babazadeh, "Energy and entropy evaluation and two-phase simulation of nanoparticles within a solar unit with impose of new turbulator", Sustainable Energy Technologies and Assessments, 39, p.100727, 2020, doi.org/10.1016/j.seta.2020.100727.
  • M. Sheikholeslami, M. Jafaryar, E. Abohamzeh, A. Shafee, Z. Li, and R. U. Haq, "Heat transfer of nanoparticles employing innovative turbulator considering entropy generation", International Journal of Heat and Mass Transfer, 136, pp. 1233-1240, 2019, doi.org/10.1016/j.ijheatmasstransfer.2019.03.091.
  • M. W. Glasscott, A. D. Pendergast, S. Goines, A. R. Bishop, A. T. Hoang, C. Renault, and J. E. Dick, "Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis", Nature Communications, Vol. 10, no. 1, p.2650, 2019, doi.org/10.1038/s41467-019-10303-z.
  • C. Zhang, Z. Peng, C. Huang, B. Zhang, C. Xing, H. Chen, H. Cheng, J. Wang, and S. Tang, "High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems", Nano Energy, 81, p.105609, 2021, doi.org/10.1016/j.nanoen.2020.105609.
  • J. F. Klein, Physical significance of entropy or of the second law, New York: D. Van Nostrand Company, 1910, doi.org/10.5962/bhl.title.19423.
  • E. G. D. Cohen, "Boltzmann and Einstein: Statistics and dynamics—An unsolved problem", Pramana, 64, pp. 635-643, 2005, doi.org/10.1007/BF02704573.
  • W. Thomson, "The kinetic theory of the dissipation of energy", Proceedings of the Royal Society of Edinburgh, 8, pp. 325-334, 1875, 9. doi.org/10.1017/S0370164600029680.
  • S. H. Burbury, "A theorem on the dissipation of energy", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 13, no. 83, pp. 417-419, 1882, LII. doi.org/10.1080/14786448208627206.
  • R. Lord, "On the dissipation of energy", Van Nostrand's Eclectic Engineering Magazine, Vol. 12, no. 78, pp. 1869-1879.
  • W. Thomson, "On a Universal Tendency in Nature to the Dissipation of Mechanical Energy", Proceedings of the Royal Society of Edinburgh, 3, pp.139-142, 1857, 2. doi.org/10.1017/S0370164600027541.
  • H. Lee, N. Campbell, J. Lee, T. J. Asel, T. R. Paudel, H. Zhou, J. W. Lee, B. Noesges, J. Seo, B. Park, and L. J. Brillson, "Direct observation of a two-dimensional hole gas at oxide interfaces", Nature materials, Vol. 17, no. 3, pp. 231-236, 2018, doi.org/10.1038/s41563-017-0002-4.
  • M. Akbarifar, M. Divandari, S. M. A. Boutorabi, S. H. Ha, Y. O. Yoon, and S. K. Kim, "Short-time oxidation of Al–Mg in dynamic conditions", Oxidation of Metals, 94, pp. 409-429, 2020,doi.org/10.1007/s11085-020-09999-y.
  • A. Dehhaghi, and S. M. A. Boutorabi, "Thickness estimation (folds and wrinkles) on short time dynamically formed double oxide film in Al-7Si-Mg alloyed with beryllium", Materials Research Express, Vol. 6, no. 10, p.106574, 2019,doi.org/10.1088/2053-1591/ab35ed.
  • J. Campbell, "The consolidation of metals: The origin of bifilms", Journal of materials science, 51, pp. 96-106, 2016, doi.org/10.1007/s10853-015-9399-9.
  • G. Gyarmati, G. Fegyverneki, T. Mende, and M. Tokár, "Characterization of the double oxide film content of liquid aluminum alloys by computed tomography", Materials Characterization, 157, p.109925, 2019, doi.org/10.1016/j.matchar.2019.109925.
  • H. Lee, N. Campbell, J. Lee, T. J. Asel, T. R. Paudel, H. Zhou, J. W. Lee, B. Noesges, J. Seo, B. Park, and L. J. Brillson, "Direct observation of a two-dimensional hole gas at oxide interfaces", Nature materials, Vol. 17, no. 3, pp. 231-236, 2018,doi.org/10.1038/s41563-017-0002-4.
  • A. Dehhaghi, and S. M. A. Boutorabi, "Nano Double Oxide Film (NDOF) Characteristics of A356 Alloy Casting Protected With Beryllium in Turbulence Conditions", Founding Research Journal, Vol. 2, no. 2, pp. 71-78, 2018.
  • S. M. A. Boutorabi, P. Torkaman, J. Campbell, and A. Zolfaghari, "Structure and properties of carbon steel cast by the ablation process", International Journal of Metalcasting, 15, pp. 306-318, 2021, doi.org/10.1007/s40962-020-00466-7.
  • A. H. Fazeli, H. Saghafian, S. M. A. Boutorabi, and J. Campbell, "The fluidity of aluminium ductile irons", International Journal of Metalcasting, pp. 1-10, 2021, doi.org/10.1007/s40962-021-00581-z.
  • Y. Mishin, "Thermodynamic theory of equilibrium fluctuations", Annals of Physics, 363, pp. 48-97, 2015, doi.org/10.1016/j.aop.2015.09.015.
  • A. Bravetti, C. S. Lopez-Monsalvo, and F. Nettel, "Contact symmetries and Hamiltonian thermodynamics", Annals of Physics, 361, pp. 377-400, 2015, doi.org/10.1016/j.aop.2015.07.010.
  • R. Dann, and R. Kosloff, "Quantum signatures in the quantum Carnot cycle", New Journal of Physics, Vol. 22, no. 1, p.013055, 2020, doi.org/10.1088/1367-2630/ab6876.
  • G. Bulnes Cuetara, A. Engels, and M. Esposito, "Stochastic thermodynamics of rapidly driven quantum systems", New Journal of Physics, 17, p.055002, 2015, doi.org/10.1088/1367-2630/17/5/055002.
  • R. Gallego, J. Eisert, and H. Wilming, "Thermodynamic work from operational principles", New Journal of Physics, Vol. 18, no. 10, p. 103017, 2016, doi.org/10.1088/1367-2630/18/10/103017.
  • G. Gour, M. P. Müller, V. Narasimhachar, R. W. Spekkens, and N. Y. Halpern, "The resource theory of informational nonequilibrium in thermodynamics", Physics Reports, 583, pp. 1-58, 2015, doi.org/10.1016/j.physrep.2015.04.003.
  • A. Puglisi, A. Sarracino, and A. Vulpiani, "Temperature in and out of equilibrium: A review of concepts, tools and attempts", Physics Reports, 709, pp. 1-60, 2017, doi.org/10.1016/j.physrep.2017.09.001.
  • Z. Said, L. S. Sundar, A. K. Tiwari, H. M. Ali, M. Sheikholeslami, E. Bellos, and H. Babar, "Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids", Physics Reports, 946, pp. 1-94, 2022, doi.org/10.1016/j.physrep.2021.07.002.
  • M. N. Bera, A. Riera, M. Lewenstein, and A. Winter, "Generalized laws of thermodynamics in the presence of correlations", Nature communications, Vol. 8, no. 1, p.2180, 2017, doi.org/10.1038/s41467-017-02370-x.
  • S. Shahsavari, "Possiblity unique combination for first and second law of thermodynamics", Quantum Journal of Engineering, Science and Technology, Vol. 2, no. 5, pp. 51-52, 2021,.
  • L. Qiu, N. Zhu, Y. Feng, E. E. Michaelides, G. Żyła, D. Jing, X. Zhang, P. M. Norris, C.N. Markides, and O. Mahian, "A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids", Physics Reports, 843, pp. 1-81, 2020, doi.org/10.1016/j.physrep.2019.12.001.
  • Á. Rivas, "Strong coupling thermodynamics of open quantum systems", Physical review letters, Vol. 124, no. 16, p.160601, 2020, doi.org/10.1103/PhysRevLett.124.160601.
  • I. Peshkov, M. Pavelka, E. Romenski, and M. Grmela, , "Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations", Continuum Mechanics and Thermodynamics, 30, pp.1343-1378, 2018, doi.org/10.1007/s00161-018-0621-2.
  • K. Ptaszyński, and M. Esposito, "Thermodynamics of quantum information flows", Physical review letters, Vol. 122, no. 15, p.150603, 2019, doi.org/10.1103/PhysRevLett.122.150603.
  • L. Masanes, and J. Oppenheim, "A general derivation and quantification of the third law of thermodynamics", Nature communications, Vol. 8, no. 1, pp. 1-7, 2017, doi.org/10.1038/ncomms14538.
  • S. Shahsavari, and M. Moradi, "A General Solution to the Different Formulations of the Second Law of Thermodynamics", Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, Vol. 82, no. 2, pp. 61-71, 2021, doi.org/10.37934/arfmts.82.2.6171.
  • S. Shahsavari, M. Moradi, and P. Torkaman, "A Quasi-Statistical Approach to the Boltzmann Entropy Equation Based on a Novel Energy Conservation Principle", Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, Vol. 101, no. 2, pp. 99-110, 2023, doi.org/10.37934/arfmts.101.2.99110.
  • S. Shahsavari, and M. Moradi, "A New Approach to the Energy Conservation Principle and Physical Systems", Ph.D. dissertation, Department of Mechanical Engineering, Isfahan University of Technology, IR, 2022.
  • S. Shahsavari, and M. Moradi, "A Study of the Entropy Production in Physical Processes from a New Perspective of the Energy Structure", Asian Journal of Applied Sciences (ISSN: 2321-0893), 8, 2020, doi.org/10.24203/ajas.v8i6.6472.
  • H. J. Borchers, "Some remarks on the second law of thermodynamics", Reports on mathematical physics, Vol. 22, no. 1, pp. 29-48, 1985, doi.org/10.1016/0034-4877(85)90004-7.
  • B. C. Eu, "Kinetic theory and irreversible thermodynamics", Accounts of Chemical Research, Vol. 19, no. 5, pp. 153-160, 1986, doi.org/10.1021/ar00125a005.
  • R. D. Gregory, Classical mechanics, Cambridge University Press, 2006.
  • É. Roldán, Irreversibility and dissipation in microscopic systems, Springer, 2014, doi.org/10.1007/978-3-319-07079-7.
  • D. R. Bland, The theory of linear viscoelasticity, New York: Courier Dover Publications, 2016.
  • S. Shahsavari, and P. Torkaman, "Energy Conservation Principle from the Perspective of the Energy Structure Theory", Asian Journal of Applied Sciences (ISSN: 2321–0893) Vol. 10, no. 5, 2022, doi.org/10.24203/ajas.v10i5.6950.
  • T. Z. Kalanov, "On the correct formulation of the first law of thermodynamics", In APS April Meeting Abstracts, pp. D1-055, 2006.
  • S. Carnot, R. Clausius, and W. T. B. Kelvin, The Second Law of Thermodynamics, American Book Company, 1899.
  • R. Luzzi, Á. R. Vasconcellos, and J. G. Ramos, "On the statistical foundations of irreversible thermodynamics", Fortschritte der Physik: Progress of Physics, Vol. 47, no. 4, pp. 401-432, 1999.
  • L. Onsager, "Reciprocal relations in irreversible processes", I. Physical review, Vol. 37, no. 4, p. 405, 1931, doi.org/10.1103/PhysRev.37.405.
  • M. Planck, "On the law of the energy distribution in the normal spectrum", Ann. Phys, Vol. 4, no. 553, pp. 1-11, 1901, doi.org/10.1016/B978-0-08-012102-4.50013-9.
  • S. Shahsavari, M. Moradi, and M. Esmaeilpour, "On the Irreversibility in Mechanical Systems Using a New Macroscopic Energy Structure Modeling", Asian Journal of Applied Sciences (ISSN: 2321–0893), Vol. 8, no. 6, 2020, doi.org/10.24203/ajas.v8i6.6473.
  • M. R. von Spakovsky, "The second law: A unified approach to thermodynamics applicable to all systems and all states", In AIP Conference Proceedings, Vol. 1033, no. 1, pp. 302-308, American Institute of Physics, 2008, doi.org/10.1063/1.2979049.
  • V. N. Pokrovskii, "A derivation of the main relations of nonequilibrium thermodynamics", International Scholarly Research Notices, 2013, doi.org/10.1155/2013/906136.
  • M. Esposito, and C. Van den Broeck, "Three faces of the second law. I. Master equation formulation", Physical Review E, Vol. 82, no. 1, p.011143, 2010, doi.org/10.1103/PhysRevE.82.011143.
  • M. S. Ma, and R. Zhao, "Corrected form of the first law of thermodynamics for regular black holes", Classical and Quantum Gravity, Vol. 31, no. 24, p.245014, 2014, doi.org/10.1088/0264-9381/31/24/245014.
  • T. W. Xue, and Z. Y. Guo, "What is the real Clausius statement of the second law of thermodynamics", Entropy, Vol. 21, no. 10, p.926, 2019.
  • V. N. Pokrovski, "Extended thermodynamics in a discrete-system approach", European journal of physics, Vol. 26, no. 5, p.769, 2005, doi.org/10.1088/0143-0807/26/5/009.
  • V. A. Etkin, "Methodological principles of modern thermodynamics", arXiv preprint arXiv:1401.0550, 2014.
  • J. Serrin, "Conceptual analysis of the classical second laws of thermodynamics", Archive for Rational Mechanics and Analysis, Vol. 70, no. 4, pp. 355-371, 1979, doi.org/10.1007/BF00281160.
  • P. Podio-Guidugli, "A virtual power format for thermomechanics", Continuum Mechanics and Thermodynamics, 20, pp. 479-487, 2009, doi.org/10.1007/s00161-009-0093-5.
There are 80 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Review Articles
Authors

Saeed Shahsavari 0000-0003-2801-487X

S. Mohammad Ali Boutorabi This is me

Early Pub Date August 17, 2023
Publication Date September 1, 2023
Published in Issue Year 2023 Volume: 26 Issue: 3

Cite

APA Shahsavari, S., & Boutorabi, S. M. A. (2023). Energy Structure Theory: A General Unified Thermodynamics Theory. International Journal of Thermodynamics, 26(3), 47-62. https://doi.org/10.5541/ijot.1257725
AMA Shahsavari S, Boutorabi SMA. Energy Structure Theory: A General Unified Thermodynamics Theory. International Journal of Thermodynamics. September 2023;26(3):47-62. doi:10.5541/ijot.1257725
Chicago Shahsavari, Saeed, and S. Mohammad Ali Boutorabi. “Energy Structure Theory: A General Unified Thermodynamics Theory”. International Journal of Thermodynamics 26, no. 3 (September 2023): 47-62. https://doi.org/10.5541/ijot.1257725.
EndNote Shahsavari S, Boutorabi SMA (September 1, 2023) Energy Structure Theory: A General Unified Thermodynamics Theory. International Journal of Thermodynamics 26 3 47–62.
IEEE S. Shahsavari and S. M. A. Boutorabi, “Energy Structure Theory: A General Unified Thermodynamics Theory”, International Journal of Thermodynamics, vol. 26, no. 3, pp. 47–62, 2023, doi: 10.5541/ijot.1257725.
ISNAD Shahsavari, Saeed - Boutorabi, S. Mohammad Ali. “Energy Structure Theory: A General Unified Thermodynamics Theory”. International Journal of Thermodynamics 26/3 (September 2023), 47-62. https://doi.org/10.5541/ijot.1257725.
JAMA Shahsavari S, Boutorabi SMA. Energy Structure Theory: A General Unified Thermodynamics Theory. International Journal of Thermodynamics. 2023;26:47–62.
MLA Shahsavari, Saeed and S. Mohammad Ali Boutorabi. “Energy Structure Theory: A General Unified Thermodynamics Theory”. International Journal of Thermodynamics, vol. 26, no. 3, 2023, pp. 47-62, doi:10.5541/ijot.1257725.
Vancouver Shahsavari S, Boutorabi SMA. Energy Structure Theory: A General Unified Thermodynamics Theory. International Journal of Thermodynamics. 2023;26(3):47-62.