Research Article
BibTex RIS Cite

Eksenel Yük Altında Kompozit Kolonların Davranışının Analitik Değerlendirilmesi

Year 2021, Volume: 7 Issue: 3, 526 - 536, 31.12.2021
https://doi.org/10.29132/ijpas.991166

Abstract

Literatürde, dinamik yüklere maruz kalan bu tür kompozit kolon elemanlarının tepkisini modellemek için farklı doğrusal olmayan modelleme stratejileri için çeşitli çalışmalar yapılmıştır. Literatürde son yıllarda kullanılan ABAQUS, ANSYS ve LS-DYNA gibi bir sonlu elemanlar yöntemi kullanan yazılımlar ile beton dolgulu çelik tüp elemanlarına ait çalışmalarda, çelik ile beton bileşenlerin genellikle plaka, kabuk veya katı elemanların yardımı ile ayrı ayrı modellendikleri görülmektedir. Bu eleman modellerinin aralarındaki etkileşimi simüle etmek için bazı diğer bağlayıcı veya arayüz elemanlarının yardımına ihtiyaç duyulmaktadır. Dolayısıyla, ticari paketler kullanmanın en büyük dezavantajı, analitik olarak modellencecek elemana ait çok daha küçük parçalar kullanılarak ve bunlar arasında üretilecek olan etkileşim yapıları nedeniyle çok karmaşık hesaplamalar ortaya çıkmaktadır. Sonuç olarak hesaplama açısından yoğun ve aynı zaman uzun süreli çalışma gerekliliği ortaya çıkmaktadır. Bu çalışma kapsamında kompozit kolonların eksenel düşey etkiler altında fiber kesitli elemanlar ve standart malzeme modelleri kullanılarak daha hızlı ve mümkün olduğunca daha doğru hesaplanması hedeflenmiştir. Seçilen parametrelerin elde edilen sonuçlar üzerinde önemli derecede etkili olduğu gözlemlenmiştir.

References

  • ACI 318-08. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary.
  • AISC. (2003). Manual of steel construction, load and resistance factor design. Chicago: American Institute of Steel Construction, January.
  • Asteris, P. G., Lemonis, M. E., Nguyen, T. A., Le, H. V., & Pham, B. T. (2021). Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes. Steel and Composite Structures, 39(4), 471-491.
  • Ayough, P., Ibrahim, Z., Sulong, N. R., & Hsiao, P. C. (2021). The effects of cross-sectional shapes on the axial performance of concrete-filled steel tube columns. Journal of Constructional Steel Research, 176, 106424.
  • Baba, T., Inai, E., Kai, M., T, N., & Mukai, A. (1995). Structural behaviour of concrete filled steel tubular columns under axial compressive load, part 2: test results on rectangular columns. Abstracts of the Annual Convention of the Architectural Institute of Japan, 737–8.
  • Ding, F. X., Lu, D. R., Bai, Y., Zhou, Q. S., Ni, M., Yu, Z. W., & Jiang, G. S. (2016). Comparative study of square stirrup-confined concrete-filled steel tubular stub columns under axial loading. Thin-Walled Structures, 98, 443–453. https://doi.org/10.1016/j.tws.2015.10.018
  • Elghazouli, A. Y.,_ Castro, J. M., &Izzudd B. A. (2008). Seismic performance of composite moment-resisting frames. Engineering structures, 30(7), 1802–1819. https://doi:10.1016/j.engstruct.2007.12.004
  • Ellobody, E., & Young, B. (2006). Nonlinear analysis of concrete-filled steel SHS and RHS columns. Thin-Walled Structures, 44(8), 919–930. https://doi.org/10.1016/j.tws.2006.07.005
  • EN 1993-1-1. (2005). Eurocode 3. Design of steel structures. General rules and rules for buildings. In CEN (Vol. 3). https://doi.org/10.1017/CBO9781107415324.004
  • EN 1994-1-1. (2004). Eurocode 4: Design of composite steel and concrete structures – Part 1-1: General rules and rules for buildings. European Committee for Standardization, 3(February), 33–38. https://doi.org/10.1002/14651858.CD009305.pub2
  • Etli, S., & Güneyisi, E. M. (2020). Seismic performance evaluation of regular and irregular composite moment resisting frames. Latin American Journal of Solids and Structures, 17(7), 1–22. https://doi.org/10.1590/1679-78255969
  • Etli, S., & Güneyisi, E. M. (2021). Assessment of Seismic Behavior Factor of Code-Designed Steel–Concrete Composite Buildings. Arabian Journal for Science and Engineering, 46(5), 4271–4292. https://doi.org/10.1007/s13369-020-04913-9
  • Gadamchetty, G., Pandey, A., & Gawture, M. (2016). On Practical Implementation of the Ramberg-Osgood Model for FE Simulation. SAE International Journal of Materials and Manufacturing, 9(1), 200–205. https://doi.org/10.4271/2015-01-9086
  • Ge, H. B., & Usami, T. (1994). Strength analysis of concrete-filled thin-walled steel box columns. Journal of Constructional Steel Research, 30(3), 259–281. https://doi.org/10.1016/0143-974X(94)90003-5
  • Grauers, M. (1993). Composite columns of hollow steel sections filled with high strength concrete. Chalmers University, Göteborg, Sweden.
  • Hajjar, J. F., Schiller, P. H., & Molodan, A. (1998). A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip. Engineering Structures, 20(8), 663–676. https://doi.org/10.1016/S0141-0296(97)00107-7
  • Han, L. H., He, S. H., & Liao, F. Y. (2011). Performance and calculations of concrete filled steel tubes (CFST) under axial tension. Journal of Constructional Steel Research, 67(11), 1699–1709. https://doi.org/10.1016/j.jcsr.2011.04.005
  • Han, L. H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, 100, 211–228. https://doi.org/10.1016/j.jcsr.2014.04.016
  • Han, L. H., Lu, H., Yao, G. H., & Liao, F. Y. (2006). Further study on the flexural behaviour of concrete-filled steel tubes. Journal of Constructional Steel Research, 62(6), 554–565. https://doi.org/10.1016/j.jcsr.2005.09.002
  • Han, L. H., Yao, G. H., & Tao, Z. (2007). Performance of concrete-filled thin-walled steel tubes under pure torsion. Thin-Walled Structures, 45(1), 24–36. https://doi.org/10.1016/j.tws.2007.01.008
  • Hu, H.-T., Huang, C.-S., Wu, M.-H., & Wu, Y.-M. (2003). Nonlinear Analysis of Axially Loaded Concrete-Filled Tube Columns with Confinement Effect. Journal of Structural Engineering, 129(10), 1322–1329. https://doi.org/10.1061/(asce)0733-9445(2003)129:10(1322)
  • Hu, H. T., Huang, C. S., & Chen, Z. L. (2005). Finite element analysis of CFT columns subjected to an axial compressive force and bending moment in combination. Journal of Constructional Steel Research, 61(12), 1692–1712. https://doi.org/10.1016/j.jcsr.2005.05.002
  • Kemp, A. R., Byfield, M. P., & Nethercot, D. A. (2002). Effect of strain hardening on flexural properties of steel beams. Structural Engineer, 80(8), 29–35.
  • Lee, E.-T., Yun, B. H., Shim, H. J., Chang, K. H., & Lee, G. C. (2009). Torsional Behavior of Concrete-Filled Circular Steel Tube Columns. Journal of Structural Engineering, 135(10), 1250–1258. https://doi.org/10.1061/(asce)0733-9445(2009)135:10(1250)
  • Li, P., Zhang, T., & Wang, C. (2018). Behavior of Concrete-Filled Steel Tube Columns Subjected to Axial Compression. Advances in Materials Science and Engineering, 2018. https://doi.org/10.1155/2018/4059675
  • Liang, Q. Q. (2009). Performance-based analysis of concrete-filled steel tubular beam-columns, Part I: Theory and algorithms. Journal of Constructional Steel Research, 65(2), 363–372. https://doi.org/10.1016/j.jcsr.2008.03.007
  • Liang, Q. Q., & Fragomeni, S. (2009). Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading. Journal of Constructional Steel Research, 65(12), 2186–2196. https://doi.org/10.1016/j.jcsr.2009.06.015
  • Ly, H. B., Pham, B. T., Le, L. M., Le, T. T., Le, V. M., & Asteris, P. G. (2021). Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models. Neural Computing and Applications, 33(8), 3437-3458.
  • Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical Stress‐Strain Model for Confined Concrete. Journal of Structural Engineering, 114(8), 1804–1826. https://doi.org/10.1061/(asce)0733-9445(1988)114:8(1804)
  • Martínez-Rueda, J. E., & Elnashai, A. S. (1997). Confined concrete model under cyclic load. Materials and Structures, 30(3), 139–147. https://doi.org/10.1007/BF02486385
  • Matsui, C. (1986). Strength and Deformation Capacity of Frames Composed of Wide Flange Beams and Concrete Filled Square Steel Tubular Columns. 169–181. https://doi.org/10.3130/aijs.62.165_1
  • Ou, Z., Chen, B., Hsieh, K. H., Halling, M. W., & Barr, P. J. (2011). Experimental and Analytical Investigation of Concrete Filled Steel Tubular Columns. Journal of Structural Engineering, 137(6), 635–645. https://doi.org/10.1061/(asce)st.1943-541x.0000320
  • Perea, T., Leon, R. T., Hajjar, J. F., & Denavit, M. D. (2013). Full-Scale Tests of Slender Concrete-Filled Tubes: Axial Behavior. Journal of Structural Engineering, 139(7), 1249–1262. https://doi.org/10.1061/(asce)st.1943-541x.0000784
  • Richart, F. ., Brandzaeg, A., & Brown, R. L. (2005). The failure of Plain and Spirally Reinforced Concrete in Compression. ACI Materials Journal, 10(29), 45–52.
  • Sakino, K., & Ishibashi, H. (1985). Experimental Studies on Concrete Filled Square Steel Tubular Short Columns Subjected To Cyclic Shearing Force and Constant Axial Force. Journal of Structural and Construction Engineering (Transactions of AIJ), 353(0), 81–91. https://doi.org/10.3130/aijsx.353.0_81
  • Sakino, K., Nakahara, H., Morino, S., & Nishiyama, I. (2004). Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns. Journal of Structural Engineering, 130(2), 180–188. https://doi.org/10.1061/(asce)0733-9445(2004)130:2(180)
  • Schneider, S. P. (1998). Axially Loaded Concrete-Filled Steel Tubes. Journal of Structural Engineering, 124(10), 1125–1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  • Seismosoft. (2018). SeismoStruct A computer program for static and dynamic nonlinear analysis of framed structures V 7.0. www.seismosoft.com
  • Shanmugam, N. E., & Lakshmi, B. (2001). State of the art report on steel-concrete composite columns. Journal of Constructional Steel Research, 57(10), 1041–1080. https://doi.org/10.1016/S0143-974X(01)00021-9
  • Srinivasan, C. N., & Schneider, S. P. (1999). Axially Loaded Concrete-Filled Steel Tubes. Journal of Structural Engineering, 125(10), 1202–1206. https://doi.org/10.1061/(asce)0733-9445(1999)125:10(1202)
  • Thai, H. T., & Kim, S. E. (2011). Nonlinear inelastic analysis of concrete-filled steel tubular frames. Journal of Constructional Steel Research, 67(12), 1797–1805. https://doi.org/10.1016/j.jcsr.2011.05.004
  • Tomii, M., & Kenji, S. (1979). Elasto-plastic behavior of concrete filled square steel tubular beam-columns. Transactions of the Architectural Institute of Japan, 280, 111–122.
  • Tomii, M., & Sakino, K. (1979). Experimental Studies on the Ultimate Moment of Concrete Filled Square Steel Tubular Beam-Columns. Transactions of the Architectural Institute of Japan, 275(0), 55–65. https://doi.org/10.3130/aijsaxx.275.0_55
  • Tomii, M., Yoshimura, K., & Morishita, Y. (1977). Experimental Studies on Concrete Filled Steel Tubular Stub Columns Under Concentric Loading. International Colloquium on Stability of Structures under Static and Dynamic Loads, 718–741.
  • Wang, F. (2011). A deformation based approach to structural steel design. Imperial College London, PhD thesis.

Analytical Evaluation of Behavior of Composite Columns Under Axial Load

Year 2021, Volume: 7 Issue: 3, 526 - 536, 31.12.2021
https://doi.org/10.29132/ijpas.991166

Abstract

In the literature, various studies have been carried out for different nonlinear modeling strategies to model the response of such composite column members subjected to dynamic loads. In studies of concrete filled steel tubes elements with software using a finite element method such as ABAQUS, ANSYS and LS-DYNA, which have been used in the literature in recent years, it is seen that steel and concrete components are generally modeled separately with the help of plate, shell, or solid elements. To simulate the interaction between these element models, the help of some other connector or interface elements is needed. Therefore, the biggest disadvantage of using commercial packages is that very complex calculations arise by using much smaller parts of the element to be analytically modeled and the interaction structures to be produced between them. As a result, the necessity of computationally intensive and at the same time long-term work emerges. Within the scope of this study, it is aimed to calculate composite columns faster and more accurately as possible by using fiber section elements and standard material models under axial loading effects. It was observed that the selected parameters had a significant effect on the results obtained

References

  • ACI 318-08. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary.
  • AISC. (2003). Manual of steel construction, load and resistance factor design. Chicago: American Institute of Steel Construction, January.
  • Asteris, P. G., Lemonis, M. E., Nguyen, T. A., Le, H. V., & Pham, B. T. (2021). Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes. Steel and Composite Structures, 39(4), 471-491.
  • Ayough, P., Ibrahim, Z., Sulong, N. R., & Hsiao, P. C. (2021). The effects of cross-sectional shapes on the axial performance of concrete-filled steel tube columns. Journal of Constructional Steel Research, 176, 106424.
  • Baba, T., Inai, E., Kai, M., T, N., & Mukai, A. (1995). Structural behaviour of concrete filled steel tubular columns under axial compressive load, part 2: test results on rectangular columns. Abstracts of the Annual Convention of the Architectural Institute of Japan, 737–8.
  • Ding, F. X., Lu, D. R., Bai, Y., Zhou, Q. S., Ni, M., Yu, Z. W., & Jiang, G. S. (2016). Comparative study of square stirrup-confined concrete-filled steel tubular stub columns under axial loading. Thin-Walled Structures, 98, 443–453. https://doi.org/10.1016/j.tws.2015.10.018
  • Elghazouli, A. Y.,_ Castro, J. M., &Izzudd B. A. (2008). Seismic performance of composite moment-resisting frames. Engineering structures, 30(7), 1802–1819. https://doi:10.1016/j.engstruct.2007.12.004
  • Ellobody, E., & Young, B. (2006). Nonlinear analysis of concrete-filled steel SHS and RHS columns. Thin-Walled Structures, 44(8), 919–930. https://doi.org/10.1016/j.tws.2006.07.005
  • EN 1993-1-1. (2005). Eurocode 3. Design of steel structures. General rules and rules for buildings. In CEN (Vol. 3). https://doi.org/10.1017/CBO9781107415324.004
  • EN 1994-1-1. (2004). Eurocode 4: Design of composite steel and concrete structures – Part 1-1: General rules and rules for buildings. European Committee for Standardization, 3(February), 33–38. https://doi.org/10.1002/14651858.CD009305.pub2
  • Etli, S., & Güneyisi, E. M. (2020). Seismic performance evaluation of regular and irregular composite moment resisting frames. Latin American Journal of Solids and Structures, 17(7), 1–22. https://doi.org/10.1590/1679-78255969
  • Etli, S., & Güneyisi, E. M. (2021). Assessment of Seismic Behavior Factor of Code-Designed Steel–Concrete Composite Buildings. Arabian Journal for Science and Engineering, 46(5), 4271–4292. https://doi.org/10.1007/s13369-020-04913-9
  • Gadamchetty, G., Pandey, A., & Gawture, M. (2016). On Practical Implementation of the Ramberg-Osgood Model for FE Simulation. SAE International Journal of Materials and Manufacturing, 9(1), 200–205. https://doi.org/10.4271/2015-01-9086
  • Ge, H. B., & Usami, T. (1994). Strength analysis of concrete-filled thin-walled steel box columns. Journal of Constructional Steel Research, 30(3), 259–281. https://doi.org/10.1016/0143-974X(94)90003-5
  • Grauers, M. (1993). Composite columns of hollow steel sections filled with high strength concrete. Chalmers University, Göteborg, Sweden.
  • Hajjar, J. F., Schiller, P. H., & Molodan, A. (1998). A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip. Engineering Structures, 20(8), 663–676. https://doi.org/10.1016/S0141-0296(97)00107-7
  • Han, L. H., He, S. H., & Liao, F. Y. (2011). Performance and calculations of concrete filled steel tubes (CFST) under axial tension. Journal of Constructional Steel Research, 67(11), 1699–1709. https://doi.org/10.1016/j.jcsr.2011.04.005
  • Han, L. H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, 100, 211–228. https://doi.org/10.1016/j.jcsr.2014.04.016
  • Han, L. H., Lu, H., Yao, G. H., & Liao, F. Y. (2006). Further study on the flexural behaviour of concrete-filled steel tubes. Journal of Constructional Steel Research, 62(6), 554–565. https://doi.org/10.1016/j.jcsr.2005.09.002
  • Han, L. H., Yao, G. H., & Tao, Z. (2007). Performance of concrete-filled thin-walled steel tubes under pure torsion. Thin-Walled Structures, 45(1), 24–36. https://doi.org/10.1016/j.tws.2007.01.008
  • Hu, H.-T., Huang, C.-S., Wu, M.-H., & Wu, Y.-M. (2003). Nonlinear Analysis of Axially Loaded Concrete-Filled Tube Columns with Confinement Effect. Journal of Structural Engineering, 129(10), 1322–1329. https://doi.org/10.1061/(asce)0733-9445(2003)129:10(1322)
  • Hu, H. T., Huang, C. S., & Chen, Z. L. (2005). Finite element analysis of CFT columns subjected to an axial compressive force and bending moment in combination. Journal of Constructional Steel Research, 61(12), 1692–1712. https://doi.org/10.1016/j.jcsr.2005.05.002
  • Kemp, A. R., Byfield, M. P., & Nethercot, D. A. (2002). Effect of strain hardening on flexural properties of steel beams. Structural Engineer, 80(8), 29–35.
  • Lee, E.-T., Yun, B. H., Shim, H. J., Chang, K. H., & Lee, G. C. (2009). Torsional Behavior of Concrete-Filled Circular Steel Tube Columns. Journal of Structural Engineering, 135(10), 1250–1258. https://doi.org/10.1061/(asce)0733-9445(2009)135:10(1250)
  • Li, P., Zhang, T., & Wang, C. (2018). Behavior of Concrete-Filled Steel Tube Columns Subjected to Axial Compression. Advances in Materials Science and Engineering, 2018. https://doi.org/10.1155/2018/4059675
  • Liang, Q. Q. (2009). Performance-based analysis of concrete-filled steel tubular beam-columns, Part I: Theory and algorithms. Journal of Constructional Steel Research, 65(2), 363–372. https://doi.org/10.1016/j.jcsr.2008.03.007
  • Liang, Q. Q., & Fragomeni, S. (2009). Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading. Journal of Constructional Steel Research, 65(12), 2186–2196. https://doi.org/10.1016/j.jcsr.2009.06.015
  • Ly, H. B., Pham, B. T., Le, L. M., Le, T. T., Le, V. M., & Asteris, P. G. (2021). Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models. Neural Computing and Applications, 33(8), 3437-3458.
  • Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical Stress‐Strain Model for Confined Concrete. Journal of Structural Engineering, 114(8), 1804–1826. https://doi.org/10.1061/(asce)0733-9445(1988)114:8(1804)
  • Martínez-Rueda, J. E., & Elnashai, A. S. (1997). Confined concrete model under cyclic load. Materials and Structures, 30(3), 139–147. https://doi.org/10.1007/BF02486385
  • Matsui, C. (1986). Strength and Deformation Capacity of Frames Composed of Wide Flange Beams and Concrete Filled Square Steel Tubular Columns. 169–181. https://doi.org/10.3130/aijs.62.165_1
  • Ou, Z., Chen, B., Hsieh, K. H., Halling, M. W., & Barr, P. J. (2011). Experimental and Analytical Investigation of Concrete Filled Steel Tubular Columns. Journal of Structural Engineering, 137(6), 635–645. https://doi.org/10.1061/(asce)st.1943-541x.0000320
  • Perea, T., Leon, R. T., Hajjar, J. F., & Denavit, M. D. (2013). Full-Scale Tests of Slender Concrete-Filled Tubes: Axial Behavior. Journal of Structural Engineering, 139(7), 1249–1262. https://doi.org/10.1061/(asce)st.1943-541x.0000784
  • Richart, F. ., Brandzaeg, A., & Brown, R. L. (2005). The failure of Plain and Spirally Reinforced Concrete in Compression. ACI Materials Journal, 10(29), 45–52.
  • Sakino, K., & Ishibashi, H. (1985). Experimental Studies on Concrete Filled Square Steel Tubular Short Columns Subjected To Cyclic Shearing Force and Constant Axial Force. Journal of Structural and Construction Engineering (Transactions of AIJ), 353(0), 81–91. https://doi.org/10.3130/aijsx.353.0_81
  • Sakino, K., Nakahara, H., Morino, S., & Nishiyama, I. (2004). Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns. Journal of Structural Engineering, 130(2), 180–188. https://doi.org/10.1061/(asce)0733-9445(2004)130:2(180)
  • Schneider, S. P. (1998). Axially Loaded Concrete-Filled Steel Tubes. Journal of Structural Engineering, 124(10), 1125–1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  • Seismosoft. (2018). SeismoStruct A computer program for static and dynamic nonlinear analysis of framed structures V 7.0. www.seismosoft.com
  • Shanmugam, N. E., & Lakshmi, B. (2001). State of the art report on steel-concrete composite columns. Journal of Constructional Steel Research, 57(10), 1041–1080. https://doi.org/10.1016/S0143-974X(01)00021-9
  • Srinivasan, C. N., & Schneider, S. P. (1999). Axially Loaded Concrete-Filled Steel Tubes. Journal of Structural Engineering, 125(10), 1202–1206. https://doi.org/10.1061/(asce)0733-9445(1999)125:10(1202)
  • Thai, H. T., & Kim, S. E. (2011). Nonlinear inelastic analysis of concrete-filled steel tubular frames. Journal of Constructional Steel Research, 67(12), 1797–1805. https://doi.org/10.1016/j.jcsr.2011.05.004
  • Tomii, M., & Kenji, S. (1979). Elasto-plastic behavior of concrete filled square steel tubular beam-columns. Transactions of the Architectural Institute of Japan, 280, 111–122.
  • Tomii, M., & Sakino, K. (1979). Experimental Studies on the Ultimate Moment of Concrete Filled Square Steel Tubular Beam-Columns. Transactions of the Architectural Institute of Japan, 275(0), 55–65. https://doi.org/10.3130/aijsaxx.275.0_55
  • Tomii, M., Yoshimura, K., & Morishita, Y. (1977). Experimental Studies on Concrete Filled Steel Tubular Stub Columns Under Concentric Loading. International Colloquium on Stability of Structures under Static and Dynamic Loads, 718–741.
  • Wang, F. (2011). A deformation based approach to structural steel design. Imperial College London, PhD thesis.
There are 45 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Serkan Etli 0000-0003-3093-4106

Early Pub Date December 27, 2021
Publication Date December 31, 2021
Submission Date September 6, 2021
Acceptance Date November 25, 2021
Published in Issue Year 2021 Volume: 7 Issue: 3

Cite

APA Etli, S. (2021). Analytical Evaluation of Behavior of Composite Columns Under Axial Load. International Journal of Pure and Applied Sciences, 7(3), 526-536. https://doi.org/10.29132/ijpas.991166
AMA Etli S. Analytical Evaluation of Behavior of Composite Columns Under Axial Load. International Journal of Pure and Applied Sciences. December 2021;7(3):526-536. doi:10.29132/ijpas.991166
Chicago Etli, Serkan. “Analytical Evaluation of Behavior of Composite Columns Under Axial Load”. International Journal of Pure and Applied Sciences 7, no. 3 (December 2021): 526-36. https://doi.org/10.29132/ijpas.991166.
EndNote Etli S (December 1, 2021) Analytical Evaluation of Behavior of Composite Columns Under Axial Load. International Journal of Pure and Applied Sciences 7 3 526–536.
IEEE S. Etli, “Analytical Evaluation of Behavior of Composite Columns Under Axial Load”, International Journal of Pure and Applied Sciences, vol. 7, no. 3, pp. 526–536, 2021, doi: 10.29132/ijpas.991166.
ISNAD Etli, Serkan. “Analytical Evaluation of Behavior of Composite Columns Under Axial Load”. International Journal of Pure and Applied Sciences 7/3 (December 2021), 526-536. https://doi.org/10.29132/ijpas.991166.
JAMA Etli S. Analytical Evaluation of Behavior of Composite Columns Under Axial Load. International Journal of Pure and Applied Sciences. 2021;7:526–536.
MLA Etli, Serkan. “Analytical Evaluation of Behavior of Composite Columns Under Axial Load”. International Journal of Pure and Applied Sciences, vol. 7, no. 3, 2021, pp. 526-3, doi:10.29132/ijpas.991166.
Vancouver Etli S. Analytical Evaluation of Behavior of Composite Columns Under Axial Load. International Journal of Pure and Applied Sciences. 2021;7(3):526-3.

154501544915448154471544615445