Research Article
BibTex RIS Cite

Investigation of Thermal and Electrical Properties of Dipeptides Containing Fmoc Group

Year 2022, Volume: 8 Issue: 1, 91 - 101, 30.06.2022
https://doi.org/10.29132/ijpas.1011511

Abstract

In this study, a series of dipeptide compounds were synthesized as a result of the reaction of Fmoc group protected amino acids and amino acids with carboxylic acid end methyl esters with triazine reagent. The structures of the synthesized compounds were characterized by FT-IR, 1H and 13C APT NMR spectroscopy techniques. The thermal decomposition temperatures of the compounds were determined by thermogravimetric analysis method in nitrogen atmosphere from room temperature to 600 oC. When the TGA curves of the dipeptides were examined, it was observed that the thermal decomposition temperatures varied between 181 and 200 oC. The electrical behavior of the dipeptides was investigated with an impedance analyzer in the frequency range of 1-30 kHz. The variation in dielectric constant, dielectric loss, susceptibility and impedance parameters were investigated as a function of frequency. The dielectric constant of the dipeptides ranges from 5.99 to 6.67.

References

  • Athanasiou, V., Thimi, P., Liakopoulou, M., Arfara, F., Stavroulaki, D., Kyroglou, I., Skourtis, D., Stavropoulou, I., Christakopoulos, P., Kasimatis, M., Fragouli, P.G., and Iatrou, H. (2020). Synthesis and Characterization of the Novel N"-9-Fluorenylmethoxycarbonyl-l-Lysine N-Carboxy Anhydride. Synthesis of Well-Defined Linear and Branched Polypeptides. Polymers, 12, 2819.
  • Amini, E., Safdari, M. S., Weise, D. R. and Fletcher, T. H. (2019). Pyrolysis kinetics of live and dead wildland vegetation from the Southern United State, Journal of Analytical and Applied Pyrolysis, 142, 104613.
  • Çalışkan, E., Koran, K., Görgülü, A.O. and Çetin A. (2020). Electrical properties of amino acid substituted novel cinnamic acid compounds. Journal of Molecular Structure, 1222, 128830.
  • Çalışkan, E., Biryan, F., ve Koran, K. (2021). Dipeptit Kaplı Manyetik Fe3O4 Nanopartikülünün Termal ve Dielektrik Özelliklerinin İncelenmesi. Türk Doğa ve Fen Dergisi, 10(1), 259-268.
  • Darling, D. A. and Joema, S. E. (2020). Antibacterial activity, optical, mechanical, thermal, and dielectric properties of L-phenylalanine fumaric acid single crystals for biomedical, optoelectronic, and photonic applications. The Journal of Materials Science: Materials in Electronics, 31, 22427–22441.
  • Davies, J.S., and Hakeem, E. (1984). N-terminal substituent and side-chain influences on the chemical shifts of protons in model dipeptide systems. Journal of the Chemical Society, Perkin Transactions 2, 8, 1387-1392.
  • Dinesh, P., Renukappa, N.M., and Siddaramaiah. (2010). Impedance and susceptance characterization of multiwalled carbon nanotubes with high density polyethylene-carbon black nanocomposites. Integrated Ferroelectrics, 116, 128–136.
  • Dzubeck, V., and Schneider, J.P. (2000). One-pot conversion of benzyl carbamates into fluorenylmethyl carbamates. Tetrahedron Letters, 41(51), 9953-9956.
  • Ilangovan, P., Sakvai, M. S., and Kottur A. B. (2017). Synergistic effect of functionally active methacrylate polymer and ZnO nanoparticles on optical and dielectric properties. Materials Chemistry and Physics, 193, 203–211.
  • Ilgaz, A., ve Perin, D. (2021). Karbon Nanotüp Katkılı Levha Kalıplama Pestilinin AC Elektriksel İletkenliğinin ve Dielektrik Özelliklerinin İncelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10(2), 296-303.
  • Gurgenc, T. and Biryan, F. (2020). Production, thermal and dielectrical properties of Ag-doped nano-strontium apatite and nano h-BN filled poly(4-(3-(2,3,4-trimethoxyphenyl) acryloyl) phenyl acrylate) composites. Journal of Polymer Research, 27, 194.
  • Gong, X., Branford-White, C., Tao, L., Li, S., Quan, J., Nie, H., and Zhu, L. (2014). Preparation and characterization of a novel sodium alginate incorporated self-assembled Fmoc-FF composite hydrogel. Materials Science and Engineering C. 58, 478-486. Kamiński, Z. J. (1987). 2-Chloro-4,6-dimethoxy-1,3,5-triazine. A New Coupling Reagent for Peptide Synthesis. Synthesis, 10, 917-920
  • Kurt, A. (2009). Thermal decomposition kinetics of poly(nButMA-b-St) diblock copolymer synthesized by ATRP. Journal of Applied Polymer Science, 114, 624.
  • Kurt, A., and Kaya, E. (2010). Synthesis, characterization, and thermal degradation kinetics of the copolymer poly(4-methoxybenzyl methacrylate-co-isobornyl methacrylate). Journal of Applied Polymer Science,115, 2359.
  • Li Y., Cordovez M., and Karbhari V. M. (2003). Dielectric and mechanical characterization of processing and moisture uptake effects in E-glass/epoxy composites. Composites Part B, 34: 383- 390.
  • Lydia Caroline, M., and Vasudevan, S. (2008). Growth and characterization of an organic nonlinear optical material: L-alanine aluminum nitrate, Materials Letters, 62, 2245–2248.
  • Murakami, M., Hayashi, M., Tamura, N., Hashino, Y., and Ito, Y. (1996). A new water-compatible dehydrating agent DPTF. Tetrahedron Letters, 37(42), 7541-7544.
  • Narayan Bhat, M. and Dharmaprakash, S. M. (2002). Growth of nonlinear optical c-glycine crystals. Journal of Crystal Growth, 236, 376–380.
  • Pethrick R. A. and Hayward D. (2002). Real-time dielectric relaxation studies of dynamic polymeric systems. Progress in Polymer Science, 27, 1983-2017.
  • Ramachandra Raja, C., Gokila, G., Antony Joseph, A. (2009). Growth and spectroscopic characterization of a new organic nonlinear optical crystal: L-Alaninium succinate. Spectrochimica Acta Part A, 72, 753–756.
  • Ramesh Kumar, G., Gokul S. R., Mohan, R., and Jayavel, R. (2005). Growth and characterization of new nonlinear optical L-threonium acetate single crystals. Journal of Crystal Growth, 283, 193–197.
  • Ramesh, M., Raju, B., Srinivas, R., Sureshbabu, V.V., Vishwanatha, T.M. and Hemantha, H.P. (2011), Characterization of Nα-Fmoc-protected dipeptide isomers by electrospray ionization tandem mass spectrometry (ESI-MSn): effect of protecting group on fragmentation of dipeptides. Rapid Commun. Mass Spectrom., 25,1949-1958.
  • Sokoto, M. A., Singh, R., Krishna, B. B., Kumar J., and Bhaskar, T. (2016). Non-isothermal kinetic study of de-oiled seed cake of African star apple (Chrosophyllum albidum) using thermogravimetr, Heliyon, 2, e00172.
  • Suneetha, N. and Rajan Babu, D. (2018). Spectral, nonlinear, optical and optical limiting properties of l-phenylalanine l-phenylalaninium formate single crystal. Spectrochimica Acta Part A, 203, 147-157. Yakuphanoglu, F., Yoo, Y.T., and Okutan, M. (2004). An impedance spectroscopy study in poly(butylene adipate) ionomers. Annalen der Physik, 13, 559–568.
  • Tao, K., Levin, A., Abramovich, L.H. and Gazit, E. (2016). Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials. Chemical Society Review, 45, 3935-3953.
  • Zeng, S., Wu, F., Li, B., Song, X., Zheng, Y., He, G., Peng, C., and Huang, W. (2014). Synthesis, Characterization, and Evaluation of a Novel Amphiphilic Polymer RGD-PEG-Chol for Target Drug Delivery System. The Scientific World Journal, 2014, 1-10.
  • Zhang, C., Li, C.J., Zhang, G., Ning, X.J., Li, C.X., Liao, H., and Coddet, C. (2007). Ionic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte. Materials Science and Engineering B, 137,24-30.

Fmoc Grubu Taşıyan Dipeptit Yapılarının Termal ve Elektriksel Özelliklerinin İncelenmesi

Year 2022, Volume: 8 Issue: 1, 91 - 101, 30.06.2022
https://doi.org/10.29132/ijpas.1011511

Abstract

Bu çalışmada Fmoc grubu ile korunmuş amino asitler ile karboksilik asit ucu metil ester olan amino asitlerin reaksiyonu bir seri dipeptit bileşikleri sentezlendi. Sentezlenen bileşiklerin yapısı FT-IR, 1H-13C NMR spektroskopi teknikleriyle karakterize edildi. Bileşiklerin termal bozunma sıcaklıkları oda sıcaklığından 600oC’ye kadar azot atmosferinde termogravimetrik analiz yöntemiyle belirlendi. Dipeptitlerin TGA eğrileri incelendiğinde termal bozunma sıcaklıkları 181 ile 200 oC aralığında değiştiği gözlendi. Dipeptitlerin 1-30 kHz frekans aralığında empedans analizör cihazı ile elektriksel davranışları incelendi. Dielektrik sabiti, dielektrik kayıp, suseptans ve empedans parametrelerindeki değişim frekansın bir fonksiyonu olarak araştırıldı. Dipeptitlerin dielektrik sabiti 5.99 ile 6.67 aralığında değişmektedir.

References

  • Athanasiou, V., Thimi, P., Liakopoulou, M., Arfara, F., Stavroulaki, D., Kyroglou, I., Skourtis, D., Stavropoulou, I., Christakopoulos, P., Kasimatis, M., Fragouli, P.G., and Iatrou, H. (2020). Synthesis and Characterization of the Novel N"-9-Fluorenylmethoxycarbonyl-l-Lysine N-Carboxy Anhydride. Synthesis of Well-Defined Linear and Branched Polypeptides. Polymers, 12, 2819.
  • Amini, E., Safdari, M. S., Weise, D. R. and Fletcher, T. H. (2019). Pyrolysis kinetics of live and dead wildland vegetation from the Southern United State, Journal of Analytical and Applied Pyrolysis, 142, 104613.
  • Çalışkan, E., Koran, K., Görgülü, A.O. and Çetin A. (2020). Electrical properties of amino acid substituted novel cinnamic acid compounds. Journal of Molecular Structure, 1222, 128830.
  • Çalışkan, E., Biryan, F., ve Koran, K. (2021). Dipeptit Kaplı Manyetik Fe3O4 Nanopartikülünün Termal ve Dielektrik Özelliklerinin İncelenmesi. Türk Doğa ve Fen Dergisi, 10(1), 259-268.
  • Darling, D. A. and Joema, S. E. (2020). Antibacterial activity, optical, mechanical, thermal, and dielectric properties of L-phenylalanine fumaric acid single crystals for biomedical, optoelectronic, and photonic applications. The Journal of Materials Science: Materials in Electronics, 31, 22427–22441.
  • Davies, J.S., and Hakeem, E. (1984). N-terminal substituent and side-chain influences on the chemical shifts of protons in model dipeptide systems. Journal of the Chemical Society, Perkin Transactions 2, 8, 1387-1392.
  • Dinesh, P., Renukappa, N.M., and Siddaramaiah. (2010). Impedance and susceptance characterization of multiwalled carbon nanotubes with high density polyethylene-carbon black nanocomposites. Integrated Ferroelectrics, 116, 128–136.
  • Dzubeck, V., and Schneider, J.P. (2000). One-pot conversion of benzyl carbamates into fluorenylmethyl carbamates. Tetrahedron Letters, 41(51), 9953-9956.
  • Ilangovan, P., Sakvai, M. S., and Kottur A. B. (2017). Synergistic effect of functionally active methacrylate polymer and ZnO nanoparticles on optical and dielectric properties. Materials Chemistry and Physics, 193, 203–211.
  • Ilgaz, A., ve Perin, D. (2021). Karbon Nanotüp Katkılı Levha Kalıplama Pestilinin AC Elektriksel İletkenliğinin ve Dielektrik Özelliklerinin İncelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10(2), 296-303.
  • Gurgenc, T. and Biryan, F. (2020). Production, thermal and dielectrical properties of Ag-doped nano-strontium apatite and nano h-BN filled poly(4-(3-(2,3,4-trimethoxyphenyl) acryloyl) phenyl acrylate) composites. Journal of Polymer Research, 27, 194.
  • Gong, X., Branford-White, C., Tao, L., Li, S., Quan, J., Nie, H., and Zhu, L. (2014). Preparation and characterization of a novel sodium alginate incorporated self-assembled Fmoc-FF composite hydrogel. Materials Science and Engineering C. 58, 478-486. Kamiński, Z. J. (1987). 2-Chloro-4,6-dimethoxy-1,3,5-triazine. A New Coupling Reagent for Peptide Synthesis. Synthesis, 10, 917-920
  • Kurt, A. (2009). Thermal decomposition kinetics of poly(nButMA-b-St) diblock copolymer synthesized by ATRP. Journal of Applied Polymer Science, 114, 624.
  • Kurt, A., and Kaya, E. (2010). Synthesis, characterization, and thermal degradation kinetics of the copolymer poly(4-methoxybenzyl methacrylate-co-isobornyl methacrylate). Journal of Applied Polymer Science,115, 2359.
  • Li Y., Cordovez M., and Karbhari V. M. (2003). Dielectric and mechanical characterization of processing and moisture uptake effects in E-glass/epoxy composites. Composites Part B, 34: 383- 390.
  • Lydia Caroline, M., and Vasudevan, S. (2008). Growth and characterization of an organic nonlinear optical material: L-alanine aluminum nitrate, Materials Letters, 62, 2245–2248.
  • Murakami, M., Hayashi, M., Tamura, N., Hashino, Y., and Ito, Y. (1996). A new water-compatible dehydrating agent DPTF. Tetrahedron Letters, 37(42), 7541-7544.
  • Narayan Bhat, M. and Dharmaprakash, S. M. (2002). Growth of nonlinear optical c-glycine crystals. Journal of Crystal Growth, 236, 376–380.
  • Pethrick R. A. and Hayward D. (2002). Real-time dielectric relaxation studies of dynamic polymeric systems. Progress in Polymer Science, 27, 1983-2017.
  • Ramachandra Raja, C., Gokila, G., Antony Joseph, A. (2009). Growth and spectroscopic characterization of a new organic nonlinear optical crystal: L-Alaninium succinate. Spectrochimica Acta Part A, 72, 753–756.
  • Ramesh Kumar, G., Gokul S. R., Mohan, R., and Jayavel, R. (2005). Growth and characterization of new nonlinear optical L-threonium acetate single crystals. Journal of Crystal Growth, 283, 193–197.
  • Ramesh, M., Raju, B., Srinivas, R., Sureshbabu, V.V., Vishwanatha, T.M. and Hemantha, H.P. (2011), Characterization of Nα-Fmoc-protected dipeptide isomers by electrospray ionization tandem mass spectrometry (ESI-MSn): effect of protecting group on fragmentation of dipeptides. Rapid Commun. Mass Spectrom., 25,1949-1958.
  • Sokoto, M. A., Singh, R., Krishna, B. B., Kumar J., and Bhaskar, T. (2016). Non-isothermal kinetic study of de-oiled seed cake of African star apple (Chrosophyllum albidum) using thermogravimetr, Heliyon, 2, e00172.
  • Suneetha, N. and Rajan Babu, D. (2018). Spectral, nonlinear, optical and optical limiting properties of l-phenylalanine l-phenylalaninium formate single crystal. Spectrochimica Acta Part A, 203, 147-157. Yakuphanoglu, F., Yoo, Y.T., and Okutan, M. (2004). An impedance spectroscopy study in poly(butylene adipate) ionomers. Annalen der Physik, 13, 559–568.
  • Tao, K., Levin, A., Abramovich, L.H. and Gazit, E. (2016). Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials. Chemical Society Review, 45, 3935-3953.
  • Zeng, S., Wu, F., Li, B., Song, X., Zheng, Y., He, G., Peng, C., and Huang, W. (2014). Synthesis, Characterization, and Evaluation of a Novel Amphiphilic Polymer RGD-PEG-Chol for Target Drug Delivery System. The Scientific World Journal, 2014, 1-10.
  • Zhang, C., Li, C.J., Zhang, G., Ning, X.J., Li, C.X., Liao, H., and Coddet, C. (2007). Ionic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte. Materials Science and Engineering B, 137,24-30.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Eray Çalışkan 0000-0003-2399-4100

Fatih Biryan 0000-0001-9198-3329

Kenan Koran 0000-0002-2218-7211

Publication Date June 30, 2022
Submission Date October 19, 2021
Acceptance Date March 8, 2022
Published in Issue Year 2022 Volume: 8 Issue: 1

Cite

APA Çalışkan, E., Biryan, F., & Koran, K. (2022). Fmoc Grubu Taşıyan Dipeptit Yapılarının Termal ve Elektriksel Özelliklerinin İncelenmesi. International Journal of Pure and Applied Sciences, 8(1), 91-101. https://doi.org/10.29132/ijpas.1011511
AMA Çalışkan E, Biryan F, Koran K. Fmoc Grubu Taşıyan Dipeptit Yapılarının Termal ve Elektriksel Özelliklerinin İncelenmesi. International Journal of Pure and Applied Sciences. June 2022;8(1):91-101. doi:10.29132/ijpas.1011511
Chicago Çalışkan, Eray, Fatih Biryan, and Kenan Koran. “Fmoc Grubu Taşıyan Dipeptit Yapılarının Termal Ve Elektriksel Özelliklerinin İncelenmesi”. International Journal of Pure and Applied Sciences 8, no. 1 (June 2022): 91-101. https://doi.org/10.29132/ijpas.1011511.
EndNote Çalışkan E, Biryan F, Koran K (June 1, 2022) Fmoc Grubu Taşıyan Dipeptit Yapılarının Termal ve Elektriksel Özelliklerinin İncelenmesi. International Journal of Pure and Applied Sciences 8 1 91–101.
IEEE E. Çalışkan, F. Biryan, and K. Koran, “Fmoc Grubu Taşıyan Dipeptit Yapılarının Termal ve Elektriksel Özelliklerinin İncelenmesi”, International Journal of Pure and Applied Sciences, vol. 8, no. 1, pp. 91–101, 2022, doi: 10.29132/ijpas.1011511.
ISNAD Çalışkan, Eray et al. “Fmoc Grubu Taşıyan Dipeptit Yapılarının Termal Ve Elektriksel Özelliklerinin İncelenmesi”. International Journal of Pure and Applied Sciences 8/1 (June 2022), 91-101. https://doi.org/10.29132/ijpas.1011511.
JAMA Çalışkan E, Biryan F, Koran K. Fmoc Grubu Taşıyan Dipeptit Yapılarının Termal ve Elektriksel Özelliklerinin İncelenmesi. International Journal of Pure and Applied Sciences. 2022;8:91–101.
MLA Çalışkan, Eray et al. “Fmoc Grubu Taşıyan Dipeptit Yapılarının Termal Ve Elektriksel Özelliklerinin İncelenmesi”. International Journal of Pure and Applied Sciences, vol. 8, no. 1, 2022, pp. 91-101, doi:10.29132/ijpas.1011511.
Vancouver Çalışkan E, Biryan F, Koran K. Fmoc Grubu Taşıyan Dipeptit Yapılarının Termal ve Elektriksel Özelliklerinin İncelenmesi. International Journal of Pure and Applied Sciences. 2022;8(1):91-101.

154501544915448154471544615445