Araştırma Makalesi
BibTex RIS Kaynak Göster

SiC’ ün Enerji Spektrumu ve Özellikleri: Farklı Harmonikler için İki Foton Emilimi Kullanma

Yıl 2023, Cilt: 9 Sayı: 2, 323 - 332, 31.12.2023
https://doi.org/10.29132/ijpas.1327295

Öz

Bu makale, Silikon Karbür (SiC) yarıiletken malzemelerin enerji spektrumunu ve karakteristiklerini incelemek için iki-foton emilimi (TPA) ve çeşitli harmonikler kullanarak bir metodolojiyi açıklar. Bu yaklaşım, TPA sürecine dayalı olarak SiC' ün enerji seviyelerini ve geçişlerini simüle etmek için teorik modellerin geliştirilmesini içermektedir. SiC' ün enerji spektrumu ve özellikleri, harmonik derece değiştirilerek, araştırıldı. Ayrıca bu çalışmada, tek ve iki-foton emilimi için SiC' ün enerji spektrumu ve özelliklerinin karşılaştırması yapılarak, SiC' ün bu koşullar altında farklı özellikleri hakkında bilgi verildi. Özellikle malzemenin absorpsiyon katsayısı, oda sıcaklığında (300 K) 200-900 nm dalga boyu aralığında optik geçirgenlik ve yansıma ölçümlerinden hesaplandı. Ayrıca, SiC malzemelerinde TPA kullanılarak farklı enerjilerde merkezlenmiş Gauss fonksiyonları modellenerek, bunların Harmonik Üretim (HG) sinyaline katkıları hesaplandı.

Kaynakça

  • Apollonov, V.V. (2013). High-power optics and its new manifestations. Laser Phys, 23, 063001.
  • Attaccalite, C., Nguer, A., Cannuccia, E. and Grüning, M. (2015). Strong second harmonic generation in SiC, ZnO, GaN two-dimensional hexagonal crystals from first-principles many-body calculations. Phys. Chem. Chem. Phys., 17, 9533-9540.
  • Beer, A. (1852). Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Ann. Phys., 162, 78-88.
  • Bhatnagar, M. and Baliga, B.J. (1993). Comparison of 6H−SiC, 3C−SiC, and Si for power devices. IEEE Transactions on Electron Devices, 40 (3), 645–655.
  • Bristow, A.D., Rotenberg, N. and van Driel, H.M. (2007). Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm. Appl. Phys. Lett., 90, 191104.
  • Brodyn, M.S., Volkov, V.I., Lyakhovetskii, V.R., Rudenko, V.I., Puzilkov, V.M. and Semenov, A.V. (2012). Nonlinear-optical and structural properties silicon carbide films. J. Exp. Teor. Phys., 114, 205–211.
  • Burk, Jr A.A., O’Loughlin, M.J., Tsvetkov, D. and Ustin, S. (2021). Industrial Perspective of SiC Epitaxy Wide Bandgap Semiconductors for Power Electronics. ed Wellmann, P., Ohtani, N. and Rupp, R. (Weinheim: Wiley) p. 75–92.
  • Casady, J.B. and Johnson, R.W. (1996). Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications: A Review. Solid-State Electronics, 39, 1409-1422.
  • Castelletto, S. (2021). Silicon carbide single-photon sources: challenges and prospects. Mater. Quantum. Technol., 1, 023001.
  • Cui Y. and Lieber C.M. (2001). Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 291 (5505), 851-853.
  • De Leonardis, F., Soref, R. and Passaro, V. (2017). Dispersion of nonresonant third-order nonlinearities in Silicon Carbide. Sci Rep., 7, 40924.
  • De Nalda, R., López-Arias, M., Sanz, M., Oujja, M. and Castillejo, M. (2011). Harmonic generation in ablation plasmas of wide bandgap semiconductors. Physical Chemistry Chemical Physics, 13(22), 10755-10761.
  • Ganeev, R.A. (2013). Nonlinear optical properties of materials. Springer, New York, p.174.
  • Ganeev, R.A., Singhal, H., Naik, P.A., Chakera, J.A., Kumar, M. and Gupta, P. D. (2010). Fourth-order harmonic generation during parametric four-wave mixing in the filaments in ambient air. Phys. Rev. A, 82 (4), 043812.
  • Ganeev, R.A., Suzuki, M., Yoneya, S. and Kuroda, H. (2015). High-order harmonic generation during propagation of femtosecond pulses through the laser-produced plasmas of semiconductors. J. Appl. Phys., 117 (2), 2176.
  • Garcia, H. and Kalyanaraman, R. (2006). Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors. J. Phys. At. Mol. Opt. Phys., 39 (12), 2737–2746.
  • Ghimire, S., Di Chiara, A.D., Sistrunk, E., Agostini, P., Di Mauro, L.F. and Reis, D.A. (2011). Observation of high-order harmonic generation in a bulk crystal. Nat. Phys., 7(2), 138–141.
  • Hamadi, O.A., Yahia, K.Z. and Jassim, O.N.S. (2005). Properties of Inclined Silicon Carbide Thin Films Deposited by Vacuum Thermal Evaporation, Journal of Semiconductor Technology and Science, 5 (3), 182-186.
  • Harmon, K.J., Delegan, N., Highland, M.J., Heremans, H. and Hruszkewycz. S.O. (2022). Designing silicon carbide heterostructures for quantum information science: challenges and opportunities. Mater. Quantum Technol., 2, 023001.
  • Hettler, C., Sullivan, W.W. and Dickens, J.C. (2012). Characterization of Annealed HPSI 4H-SiC for Photoconductive Semiconductor Switches in Silicon Carbide and Related Materials. Materials Science Forums, 717-210, 301-304.
  • Hornberger, J., Lostetter, A.B., Olejniczak, K.J., McNutt, T., Lal, S.M. and Mantooth, A. (2004). Silicon-carbide (SiC) semiconductor power electronics for extreme high-temperature environments. IEEE Aerospace Conference Proceedings, 4, 2538–2555.
  • Ismail, R.A., Khawla, S.K. and Rana, O.M. (2017). Characterization of high photosensitivity nanostructured 4H−SiC/p−Si heterostructure prepared by laser ablation of silicon in ethanol. Materials Science in Semiconductor Processing, 68, 252–261.
  • Ivanov, P.A. and Chelnokov, V.E. (1992). Recent developments in SiC single-crystal electronics. Semicond. Sci. Technol., 7, 863.
  • Johnson, R.A., Witulski, A.F., Ball, D.R., Galloway, K.F., Sternberg, A.L., Zhang, E., Ryder, L.D., Reed, R.A., Schrimpf, R.D., Kozub, J.A., Lauenstein J.M. and Javanainen, A. (2019). Enhanced Charge Collection in SiC Power MOSFETs Demonstrated by Pulse-Laser Two-Photon Absorption SEE Experiments. IEEE Transactions on Nuclear Science, 66 (7), 1694-1701.
  • Kempf, R.W., Wilson, P.T., Canterbury, J.D., Mishina, E.D., Aktsipetrov, O.A., and Downer, M.C. (1999). Third and fourth harmonic generation at Si-SiO2 interfaces and in Si-SiO2-Cr MOS structures. Applied Physics B, 68, 325-332.
  • Kim, U., Kim, I., Park, Y., Lee, K.Y., Yim, S.Y., Park, J.G., Ahn, H.G., Park, S.H. and Choi, H. J. (2011). Synthesis of Si nanosheets by a chemical vapor deposition process and their blue emissions. Acs Nano, 5 (3), 2176-2181.
  • Lambert, J.H. (1892). Lamberts Photometrie: (Photometria, sive De mensura et gradibus luminus, colorum et umbrae). Anding E., 1728-1777.
  • Lan, Y.Z. (2018). First-principles studies of effects of layer stacking, opposite atoms, and stacking order on two-photon absorption of two-dimensional layered silicon carbide. Computational Materials Science, 151, 231-239.
  • Lee, K.M., Choi, T.Y., Lee, S.K. and Poulikakos, D. (2010). Focused ion beam-assisted manipulation of single and double β-SiC nanowires and their thermal conductivity measurements by the four-point-probe 3-ω method. Nanotechnology, 21, 125301.
  • Lin, G.R., Wu, C.L., Cheng, C.H. and Lin, Y.H. (2015). Edited by Stephen E. Saddow and Francesco La Via, Advanced Silicon Carbide Devices and Processing, IntechOpen, https://doi.org/10.5772/59734.
  • Lin, Q., Painter, O.J. and Agrawal, G.P. (2007). Nonlinear optical phenomena in silicon waveguides: Modeling and applications. Opt. Express, 15, 16604-16644.
  • Lin, X., Li, X., Zhang, Y, Hou, Y., Liu, X., Deng, C. and Zhou, Q. (2019). Third harmonic generation on silicon surface induced by femtosecond laser. Optics & Laser Technology, 111, 255-261.
  • Litchinitser, N.M. and Shalaev, V.M. (2008). Photonic metamaterials. Laser Phys. Lett., 5, 411.
  • Lohrmann, A., Johnson, B.C., McCallum, J.C. and Castelletto, S. (2017). A review on single photon sources in silicon carbide. Rep. Prog. Phys., 80, 034502.
  • Lu, X., Lee, J.Y., Rogers, S. and Lin, Q. (2014). Optical Kerr nonlinearity in a high-Q silicon carbide microresonator. Opt. Express, 22, 30826–30832.
  • Mbaye, N., Pouget, V., Darracq, F. and Lewis, D. (2013). Characterization and modeling of laser-induced single-event burn-out in SiC power diodes. Microelectronics Reliability, 53(9-11), 1315-1319.
  • Mitchel, W., Zvanut, M. and Landis, G. (2004). High Temperature Hall effect measurements of semi-insulating 4H-SiC substrates. Solid-State Electronics, 48 (10-11), 1693-1697.
  • Perevislov, S.N., Motaylo, E.S., Novoselov, E.S. and Nesmelov, D.D. (2020). Thermal conductivity of SiC-B4C materials obtained by reaction-sintering method. IOP Conf. Series: Materials Science and Engineering, 848 (1), 012066.
  • Shcherbakov, M.R., Neshev, D.N., Hopkins, B., Shorokhov, A.S., Staude, I., Melik-Gaykazyan, E.V., Decker, M., Ezhoa, A.A., Miroshnichenko, A.E., Brener, I., Fedyanin, A.A. and Kivshar, Y.S. (2014). Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano letters, 14 (11), 6488-6492.
  • Shenai, K., Scott, R.S. and Baliga, B.J. (1989). Optimum semiconductors for high power electronics. IEEE Trans. Electron Devices, 36, 1811–23.
  • Skromme, B.J., Luckowski, E., Moore, K., Bhatnagar, M., Weitzel, C.E., Gehoski, T. and Ganser, D. (2000). Electrical characteristics of Schottky barriers on 4H-SiC: The effects of barrier height nonuniformity. Journal of Electronic Materials, 29, 376-383.
  • Streetman, B.G. and Banerjee, S.K. (2000). Fundamentals of semiconductor physics and devices. 5th ed. Upper Saddle River, NJ: Prentice Hall.
  • Su, L., Zhou, D., Lu, H., Zhang, R. and Zheng, Y. (2019). Recent progress of SiC UV single photon counting avalanche photodiodes. J. Semicond., 40, 121802.
  • Syu, S.C., Cheng, C.H., Wang, H.Y., Chi, Y.C., Wu, C.I. and Lin, G.R. (2018). Realizing multi-functional all-optical data processing on nanoscale SiC waveguides.Sci. Rep., 8 (1), 14859.
  • Wang, B., Wang, Y., Lei, Y., Wu, N., Gou, Y., Han, C. and Fang, D. (2014). Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance. Journal of Materials Chemistry A, 2 (48), 20873-20881.
  • Wei, R., Song, S., Yang, K., Cui, Y., Peng, Y., Chen, X., Hu, X. and Xu, X. (2013). Thermal conductivity of 4H-SiC single crystals. Journal of Applied Physics 113, 053503.
  • Weitzel, C.E., Palmour, J.W., Carter, C.H., Moore, K., Nordquist, K.K., Allen, S., Thero, C. and Bhatnagar, M. (1996) Silicon carbide high−power devices. IEEE Transactions on Electron Devices, 43 (10), 1732–1741.
  • Wellmann, P.J. (2018). Review of SiC crystal growth technology. Semicond. Sci. Technol., 33, 103001.
  • Wherrett, B.S. (1984). Scaling rules for multiphoton interband absorption in semiconductors. J. Opt. Soc. Am. B, 1 (1), 67–72 .
  • Wright, N.G. and Horsfall, A.B. (2007). SiC sensors: A review. J. Phys. D: Appl. Phys., 40, 6345.
  • Yamada, S., Song, B., Jeon, S., Upham, J., Tanaka, Y., Asano, T. and Noda, S. (2014). Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity. Optics letters, 39 (7), 1768-71.
  • Yi, G., Lee, H., Jiannan, J., Chun, B. J., Han, S., Kim, H., Kim, Y.W., Kim, D., Kim, S.W. and Kim, Y.J. (2017). Nonlinear third harmonic generation at crystalline sapphires. Optics Express, 25 (21), 26002-26010.
  • Zhang, F. (2015). High-responsivity SiC Ultraviolet Photodetectors with SiO2 and Al2O3 Films, Advanced Silicon Carbide Devices and Processing Book, Chapter 7, 199-220.
  • Zhang, J., Zhao, W., Yu, P., Yang, G. and Liu, Z. (2020). Second harmonic generation in 2D layered materials. 2D Mater., 7, 042002.

Energy Spectrum and Properties of SiC: Using Two-Photon Absorption for Different Harmonics

Yıl 2023, Cilt: 9 Sayı: 2, 323 - 332, 31.12.2023
https://doi.org/10.29132/ijpas.1327295

Öz

This paper describes a methodology for studying the energy spectrum and characteristics of Silicon Carbide (SiC) semiconductor materials, utilizing various harmonics for two-photon absorption (TPA). The approach involves developing theoretical models to simulate the energy levels and transitions of SiC, based on the TPA process. By analyzing the resulting spectra obtained by varying the harmonic order, the energy spectrum, and properties of SiC are explored. In this work also includes a comparison of the energy spectrum and properties of SiC for single and two-photon absorption, providing insights into the distinctive features of SiC under these conditions. In particularly absorption co-efficient of the material was calculated from optical transmittance and reflectance measurements at room temperature (300 K) in the wavelength range of 200 -900 nm. In addition, Gaussian functions centered at different energies were modeled using TPA in SiC materials and their contribution to the Harmonic Generation (HG) signal was calculated.

Kaynakça

  • Apollonov, V.V. (2013). High-power optics and its new manifestations. Laser Phys, 23, 063001.
  • Attaccalite, C., Nguer, A., Cannuccia, E. and Grüning, M. (2015). Strong second harmonic generation in SiC, ZnO, GaN two-dimensional hexagonal crystals from first-principles many-body calculations. Phys. Chem. Chem. Phys., 17, 9533-9540.
  • Beer, A. (1852). Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Ann. Phys., 162, 78-88.
  • Bhatnagar, M. and Baliga, B.J. (1993). Comparison of 6H−SiC, 3C−SiC, and Si for power devices. IEEE Transactions on Electron Devices, 40 (3), 645–655.
  • Bristow, A.D., Rotenberg, N. and van Driel, H.M. (2007). Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm. Appl. Phys. Lett., 90, 191104.
  • Brodyn, M.S., Volkov, V.I., Lyakhovetskii, V.R., Rudenko, V.I., Puzilkov, V.M. and Semenov, A.V. (2012). Nonlinear-optical and structural properties silicon carbide films. J. Exp. Teor. Phys., 114, 205–211.
  • Burk, Jr A.A., O’Loughlin, M.J., Tsvetkov, D. and Ustin, S. (2021). Industrial Perspective of SiC Epitaxy Wide Bandgap Semiconductors for Power Electronics. ed Wellmann, P., Ohtani, N. and Rupp, R. (Weinheim: Wiley) p. 75–92.
  • Casady, J.B. and Johnson, R.W. (1996). Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications: A Review. Solid-State Electronics, 39, 1409-1422.
  • Castelletto, S. (2021). Silicon carbide single-photon sources: challenges and prospects. Mater. Quantum. Technol., 1, 023001.
  • Cui Y. and Lieber C.M. (2001). Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 291 (5505), 851-853.
  • De Leonardis, F., Soref, R. and Passaro, V. (2017). Dispersion of nonresonant third-order nonlinearities in Silicon Carbide. Sci Rep., 7, 40924.
  • De Nalda, R., López-Arias, M., Sanz, M., Oujja, M. and Castillejo, M. (2011). Harmonic generation in ablation plasmas of wide bandgap semiconductors. Physical Chemistry Chemical Physics, 13(22), 10755-10761.
  • Ganeev, R.A. (2013). Nonlinear optical properties of materials. Springer, New York, p.174.
  • Ganeev, R.A., Singhal, H., Naik, P.A., Chakera, J.A., Kumar, M. and Gupta, P. D. (2010). Fourth-order harmonic generation during parametric four-wave mixing in the filaments in ambient air. Phys. Rev. A, 82 (4), 043812.
  • Ganeev, R.A., Suzuki, M., Yoneya, S. and Kuroda, H. (2015). High-order harmonic generation during propagation of femtosecond pulses through the laser-produced plasmas of semiconductors. J. Appl. Phys., 117 (2), 2176.
  • Garcia, H. and Kalyanaraman, R. (2006). Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors. J. Phys. At. Mol. Opt. Phys., 39 (12), 2737–2746.
  • Ghimire, S., Di Chiara, A.D., Sistrunk, E., Agostini, P., Di Mauro, L.F. and Reis, D.A. (2011). Observation of high-order harmonic generation in a bulk crystal. Nat. Phys., 7(2), 138–141.
  • Hamadi, O.A., Yahia, K.Z. and Jassim, O.N.S. (2005). Properties of Inclined Silicon Carbide Thin Films Deposited by Vacuum Thermal Evaporation, Journal of Semiconductor Technology and Science, 5 (3), 182-186.
  • Harmon, K.J., Delegan, N., Highland, M.J., Heremans, H. and Hruszkewycz. S.O. (2022). Designing silicon carbide heterostructures for quantum information science: challenges and opportunities. Mater. Quantum Technol., 2, 023001.
  • Hettler, C., Sullivan, W.W. and Dickens, J.C. (2012). Characterization of Annealed HPSI 4H-SiC for Photoconductive Semiconductor Switches in Silicon Carbide and Related Materials. Materials Science Forums, 717-210, 301-304.
  • Hornberger, J., Lostetter, A.B., Olejniczak, K.J., McNutt, T., Lal, S.M. and Mantooth, A. (2004). Silicon-carbide (SiC) semiconductor power electronics for extreme high-temperature environments. IEEE Aerospace Conference Proceedings, 4, 2538–2555.
  • Ismail, R.A., Khawla, S.K. and Rana, O.M. (2017). Characterization of high photosensitivity nanostructured 4H−SiC/p−Si heterostructure prepared by laser ablation of silicon in ethanol. Materials Science in Semiconductor Processing, 68, 252–261.
  • Ivanov, P.A. and Chelnokov, V.E. (1992). Recent developments in SiC single-crystal electronics. Semicond. Sci. Technol., 7, 863.
  • Johnson, R.A., Witulski, A.F., Ball, D.R., Galloway, K.F., Sternberg, A.L., Zhang, E., Ryder, L.D., Reed, R.A., Schrimpf, R.D., Kozub, J.A., Lauenstein J.M. and Javanainen, A. (2019). Enhanced Charge Collection in SiC Power MOSFETs Demonstrated by Pulse-Laser Two-Photon Absorption SEE Experiments. IEEE Transactions on Nuclear Science, 66 (7), 1694-1701.
  • Kempf, R.W., Wilson, P.T., Canterbury, J.D., Mishina, E.D., Aktsipetrov, O.A., and Downer, M.C. (1999). Third and fourth harmonic generation at Si-SiO2 interfaces and in Si-SiO2-Cr MOS structures. Applied Physics B, 68, 325-332.
  • Kim, U., Kim, I., Park, Y., Lee, K.Y., Yim, S.Y., Park, J.G., Ahn, H.G., Park, S.H. and Choi, H. J. (2011). Synthesis of Si nanosheets by a chemical vapor deposition process and their blue emissions. Acs Nano, 5 (3), 2176-2181.
  • Lambert, J.H. (1892). Lamberts Photometrie: (Photometria, sive De mensura et gradibus luminus, colorum et umbrae). Anding E., 1728-1777.
  • Lan, Y.Z. (2018). First-principles studies of effects of layer stacking, opposite atoms, and stacking order on two-photon absorption of two-dimensional layered silicon carbide. Computational Materials Science, 151, 231-239.
  • Lee, K.M., Choi, T.Y., Lee, S.K. and Poulikakos, D. (2010). Focused ion beam-assisted manipulation of single and double β-SiC nanowires and their thermal conductivity measurements by the four-point-probe 3-ω method. Nanotechnology, 21, 125301.
  • Lin, G.R., Wu, C.L., Cheng, C.H. and Lin, Y.H. (2015). Edited by Stephen E. Saddow and Francesco La Via, Advanced Silicon Carbide Devices and Processing, IntechOpen, https://doi.org/10.5772/59734.
  • Lin, Q., Painter, O.J. and Agrawal, G.P. (2007). Nonlinear optical phenomena in silicon waveguides: Modeling and applications. Opt. Express, 15, 16604-16644.
  • Lin, X., Li, X., Zhang, Y, Hou, Y., Liu, X., Deng, C. and Zhou, Q. (2019). Third harmonic generation on silicon surface induced by femtosecond laser. Optics & Laser Technology, 111, 255-261.
  • Litchinitser, N.M. and Shalaev, V.M. (2008). Photonic metamaterials. Laser Phys. Lett., 5, 411.
  • Lohrmann, A., Johnson, B.C., McCallum, J.C. and Castelletto, S. (2017). A review on single photon sources in silicon carbide. Rep. Prog. Phys., 80, 034502.
  • Lu, X., Lee, J.Y., Rogers, S. and Lin, Q. (2014). Optical Kerr nonlinearity in a high-Q silicon carbide microresonator. Opt. Express, 22, 30826–30832.
  • Mbaye, N., Pouget, V., Darracq, F. and Lewis, D. (2013). Characterization and modeling of laser-induced single-event burn-out in SiC power diodes. Microelectronics Reliability, 53(9-11), 1315-1319.
  • Mitchel, W., Zvanut, M. and Landis, G. (2004). High Temperature Hall effect measurements of semi-insulating 4H-SiC substrates. Solid-State Electronics, 48 (10-11), 1693-1697.
  • Perevislov, S.N., Motaylo, E.S., Novoselov, E.S. and Nesmelov, D.D. (2020). Thermal conductivity of SiC-B4C materials obtained by reaction-sintering method. IOP Conf. Series: Materials Science and Engineering, 848 (1), 012066.
  • Shcherbakov, M.R., Neshev, D.N., Hopkins, B., Shorokhov, A.S., Staude, I., Melik-Gaykazyan, E.V., Decker, M., Ezhoa, A.A., Miroshnichenko, A.E., Brener, I., Fedyanin, A.A. and Kivshar, Y.S. (2014). Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano letters, 14 (11), 6488-6492.
  • Shenai, K., Scott, R.S. and Baliga, B.J. (1989). Optimum semiconductors for high power electronics. IEEE Trans. Electron Devices, 36, 1811–23.
  • Skromme, B.J., Luckowski, E., Moore, K., Bhatnagar, M., Weitzel, C.E., Gehoski, T. and Ganser, D. (2000). Electrical characteristics of Schottky barriers on 4H-SiC: The effects of barrier height nonuniformity. Journal of Electronic Materials, 29, 376-383.
  • Streetman, B.G. and Banerjee, S.K. (2000). Fundamentals of semiconductor physics and devices. 5th ed. Upper Saddle River, NJ: Prentice Hall.
  • Su, L., Zhou, D., Lu, H., Zhang, R. and Zheng, Y. (2019). Recent progress of SiC UV single photon counting avalanche photodiodes. J. Semicond., 40, 121802.
  • Syu, S.C., Cheng, C.H., Wang, H.Y., Chi, Y.C., Wu, C.I. and Lin, G.R. (2018). Realizing multi-functional all-optical data processing on nanoscale SiC waveguides.Sci. Rep., 8 (1), 14859.
  • Wang, B., Wang, Y., Lei, Y., Wu, N., Gou, Y., Han, C. and Fang, D. (2014). Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance. Journal of Materials Chemistry A, 2 (48), 20873-20881.
  • Wei, R., Song, S., Yang, K., Cui, Y., Peng, Y., Chen, X., Hu, X. and Xu, X. (2013). Thermal conductivity of 4H-SiC single crystals. Journal of Applied Physics 113, 053503.
  • Weitzel, C.E., Palmour, J.W., Carter, C.H., Moore, K., Nordquist, K.K., Allen, S., Thero, C. and Bhatnagar, M. (1996) Silicon carbide high−power devices. IEEE Transactions on Electron Devices, 43 (10), 1732–1741.
  • Wellmann, P.J. (2018). Review of SiC crystal growth technology. Semicond. Sci. Technol., 33, 103001.
  • Wherrett, B.S. (1984). Scaling rules for multiphoton interband absorption in semiconductors. J. Opt. Soc. Am. B, 1 (1), 67–72 .
  • Wright, N.G. and Horsfall, A.B. (2007). SiC sensors: A review. J. Phys. D: Appl. Phys., 40, 6345.
  • Yamada, S., Song, B., Jeon, S., Upham, J., Tanaka, Y., Asano, T. and Noda, S. (2014). Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity. Optics letters, 39 (7), 1768-71.
  • Yi, G., Lee, H., Jiannan, J., Chun, B. J., Han, S., Kim, H., Kim, Y.W., Kim, D., Kim, S.W. and Kim, Y.J. (2017). Nonlinear third harmonic generation at crystalline sapphires. Optics Express, 25 (21), 26002-26010.
  • Zhang, F. (2015). High-responsivity SiC Ultraviolet Photodetectors with SiO2 and Al2O3 Films, Advanced Silicon Carbide Devices and Processing Book, Chapter 7, 199-220.
  • Zhang, J., Zhao, W., Yu, P., Yang, G. and Liu, Z. (2020). Second harmonic generation in 2D layered materials. 2D Mater., 7, 042002.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bileşik Yarı İletkenler, Elektronik,Optik ve Manyetik Malzemeler
Bölüm Makaleler
Yazarlar

Dilan Alp 0000-0001-7385-2659

Erken Görünüm Tarihi 29 Aralık 2023
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 14 Temmuz 2023
Kabul Tarihi 27 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 2

Kaynak Göster

APA Alp, D. (2023). Energy Spectrum and Properties of SiC: Using Two-Photon Absorption for Different Harmonics. International Journal of Pure and Applied Sciences, 9(2), 323-332. https://doi.org/10.29132/ijpas.1327295
AMA Alp D. Energy Spectrum and Properties of SiC: Using Two-Photon Absorption for Different Harmonics. International Journal of Pure and Applied Sciences. Aralık 2023;9(2):323-332. doi:10.29132/ijpas.1327295
Chicago Alp, Dilan. “Energy Spectrum and Properties of SiC: Using Two-Photon Absorption for Different Harmonics”. International Journal of Pure and Applied Sciences 9, sy. 2 (Aralık 2023): 323-32. https://doi.org/10.29132/ijpas.1327295.
EndNote Alp D (01 Aralık 2023) Energy Spectrum and Properties of SiC: Using Two-Photon Absorption for Different Harmonics. International Journal of Pure and Applied Sciences 9 2 323–332.
IEEE D. Alp, “Energy Spectrum and Properties of SiC: Using Two-Photon Absorption for Different Harmonics”, International Journal of Pure and Applied Sciences, c. 9, sy. 2, ss. 323–332, 2023, doi: 10.29132/ijpas.1327295.
ISNAD Alp, Dilan. “Energy Spectrum and Properties of SiC: Using Two-Photon Absorption for Different Harmonics”. International Journal of Pure and Applied Sciences 9/2 (Aralık 2023), 323-332. https://doi.org/10.29132/ijpas.1327295.
JAMA Alp D. Energy Spectrum and Properties of SiC: Using Two-Photon Absorption for Different Harmonics. International Journal of Pure and Applied Sciences. 2023;9:323–332.
MLA Alp, Dilan. “Energy Spectrum and Properties of SiC: Using Two-Photon Absorption for Different Harmonics”. International Journal of Pure and Applied Sciences, c. 9, sy. 2, 2023, ss. 323-32, doi:10.29132/ijpas.1327295.
Vancouver Alp D. Energy Spectrum and Properties of SiC: Using Two-Photon Absorption for Different Harmonics. International Journal of Pure and Applied Sciences. 2023;9(2):323-32.

154501544915448154471544615445